If you want MyClass
to be a template that can hold both free function
pointers of types:
double (*)(const T &var);
bool (*)(const T &var);
for some parameter type T
, or alternatively member-function
pointers of types:
double (C::*)(const T &var);
bool (C::*)(const T &var);
for some parameter types C
and T
then, MyClass
must be parameterized
by both T
and C
and you require two specializations:
- Where
C
is some non-class type
- Where
C
is any class type
In case (1), the non-class type C
cannot possibly have member functions,
so that one will implement the free-function pointer specialization.
In case (2), the class C
could be one that has member functions, so that one
will implement the member-function pointer specialization.
The obvious choice for a non-class type C
is void
. So we can make C
default to void
:
Primary template
template<typename T, typename C = void>
struct MyClass;
So that:
MyClass<T>
will be the free function pointer specialization for T
, and:
MyClass<T,C>
for any C
other than void
, will be the member-function pointer specialization.
As you may know you can use std::enable_if
and SFINAE
to make the compiler
chose one specialization of a class template or another, depending on whether one
of its template parameters U
satisfies some compiletime test. You could take
that approach here, but another one is available that does not require that apparatus:
Starting with the primary template, we would just like to have:
Free function specialization
template<typename T>
struct MyClass<T>
{
... for free function pointers ...
};
and:
Member function specialization
template<typename T, typename C>
struct MyClass<T,C>
{
... for member function pointers ...
};
But we can't have just that, because the member function "specialization" has exactly
the same template parameters as the primary template. Which means it isn't
a specialization, and the compiler won't allow it.
You can easily remove that problem, however, simply by giving the primary
template one more defaulting template parameter that it doesn't need, but whose
presence allows both those specializations to stand.
New primary template
template <typename T, typename C = void, typename Default = void>
struct MyClass;
So here is an illustrative solution:
// Primary template
template <typename T, typename C = void, typename Default = void>
struct MyClass;
// Free function specialization
template <typename T>
struct MyClass<T>
{
using firstFunctor_t = double(*)(T const &);
using secondFunctor_t = bool(*)(T const &);
MyClass(firstFunctor_t firstFunc, secondFunctor_t secondFunc)
: _firstFunc(firstFunc),
_secondFunc(secondFunc)
{}
double callFirst(T const & var) {
return _firstFunc(var);
}
bool callSecond(T const & var) {
return _secondFunc(var);
}
private:
firstFunctor_t _firstFunc;
secondFunctor_t _secondFunc;
};
// Member function specialization
template <typename T, typename C>
struct MyClass<T,C>
{
using firstFunctor_t = double(C::*)(T const &);
using secondFunctor_t = bool(C::*)(T const &) const;
MyClass(firstFunctor_t firstFunc, secondFunctor_t secondFunc)
: _firstFunc(firstFunc),
_secondFunc(secondFunc)
{}
double callFirst(C & obj, T const & var) {
return (obj.*_firstFunc)(var);
}
double callFirst(C const & obj, T const & var) {
auto & o = const_cast<C&>(obj);
return (o.*_firstFunc)(var);
}
bool callSecond(C & obj, T const & var) {
return (obj.*_secondFunc)(var);
}
bool callSecond(C const & obj, T const & var) {
auto & o = const_cast<C&>(obj);
return (o.*_secondFunc)(var);
}
private:
firstFunctor_t _firstFunc;
secondFunctor_t _secondFunc;
};
In the member function specialization, notice a couple of points that you might
not have considered:-
I decided that the second member function I want to store shall be a
const member function. It's more than likely that a member function of C
that take a T const &
argument and returns bool will be a const
member
function, isn't it? And if so, then that const-ness
has to be part of
the member-function type definition that I use in the specialization:
using secondFunctor_t = bool(C::*)(T const &) const;
or attempts to instantiate the specialization with any bool (C::*)(T const &) const
will fail to compile.
Also, I have provided two overloads for each of MyClass<T,C>::callFirst
and MyClass<T,C>::callSecond
, one with arguments:
C & obj, T const & var
and another with arguments:
C const & obj, T const & var
Without the second, attempts to call either MyClass<T,C>::callFirst
or MyClass<T,C>::callSecond
with an obj
that is const will fail to
compile.
For program to demo this solution you can append:
#include <iostream>
#include <string>
double foo(std::string const & s)
{
return std::stod(s);
}
bool bar(std::string const & s)
{
return s.size() > 0;
}
struct SomeClass
{
SomeClass(){};
double foo(std::string const & s) {
return ::foo(s);
}
bool bar(std::string const & s) const {
return ::bar(s);
}
};
int main()
{
MyClass<std::string> my0{foo,bar};
std::cout << std::boolalpha;
std::cout << my0.callFirst("1.11") << std::endl;
std::cout << my0.callSecond("Hello World") << std::endl;
MyClass<std::string,SomeClass> my1{&SomeClass::foo,&SomeClass::bar};
SomeClass thing;
std::cout << my1.callFirst(thing,"2.22") << std::endl;
std::cout << my1.callSecond(thing,"Hello World") << std::endl;
SomeClass const constThing;
std::cout << my1.callFirst(constThing,"3.33") << std::endl;
std::cout << my1.callSecond(constThing,"Hello World") << std::endl;
return 0;
}
See it live
You said that you want this template to be "extremely flexible". The
illustrated solution is fitted to your example, but you might be
interested in know that it isn't nearly as flexible as you could get.
For both free functions and member functions, with additional variadic template
parameters, your template could store and call [member] functions with
arbitary return types and arbitary numbers of arguments of arbitrary types.
See this question and
answer.