I am working on code that loops over multiple netcdf files (large ~28G). The netcdf files have multiple 4D variables[time, east-west, south-north, height] throughout a domain. The goal is to loop over these files and to loop over each location of all of these variables in the domain and pull certain variables to store into a large array. When there is missing or incomplete files I fill the values with 99.99. Right now I am just testing by looping over 2 daily netcdf files but for some reason it is taking forever (~14 hours). I am not sure if there is a way to optimize this code. I don't think that python should take this long for this task but maybe it is a problem with python or my code. Below is my code hopefully it is readable and any suggestions on how to make this faster is greatly appreciated:
#Domain to loop over
k_space = np.arange(0,37)
j_space = np.arange(80,170)
i_space = np.arange(200,307)
predictors_wrf=[]
names_wrf=[]
counter = 0
cdate = start_date
while cdate <= end_date:
if cdate.month not in month_keep:
cdate+=inc
continue
yy = cdate.strftime('%Y')
mm = cdate.strftime('%m')
dd = cdate.strftime('%d')
filename = wrf_path+'\wrfoutRED_d01_'+yy+'-'+mm+'-'+dd+'_'+hour_str+'_00_00'
for i in i_space:
for j in j_space:
for k in k_space:
if os.path.isfile(filename):
f = nc.Dataset(filename,'r')
times = f.variables['Times'][1:]
num_lines = times.shape[0]
if num_lines == 144:
u = f.variables['U'][1:,k,j,i]
v = f.variables['V'][1:,k,j,i]
wspd = np.sqrt(u**2.+v**2.)
w = f.variables['W'][1:,k,j,i]
p = f.variables['P'][1:,k,j,i]
t = f.variables['T'][1:,k,j,i]
if num_lines < 144:
print "partial files for WRF: "+ filename
u = np.ones((144,))*99.99
v = np.ones((144,))*99.99
wspd = np.ones((144,))*99.99
w = np.ones((144,))*99.99
p = np.ones((144,))*99.99
t = np.ones((144,))*99.99
else:
u = np.ones((144,))*99.99
v = np.ones((144,))*99.99
wspd = np.ones((144,))*99.99
w = np.ones((144,))*99.99
p = np.ones((144,))*99.99
t = np.ones((144,))*99.99
counter=counter+1
predictors_wrf.append(u)
predictors_wrf.append(v)
predictors_wrf.append(wspd)
predictors_wrf.append(w)
predictors_wrf.append(p)
predictors_wrf.append(t)
u_names = 'u_'+str(k)+'_'+str(j)+'_'+str(i)
v_names = 'v_'+str(k)+'_'+str(j)+'_'+str(i)
wspd_names = 'wspd_'+str(k)+'_'+str(j)+'_'+str(i)
w_names = 'w_'+str(k)+'_'+str(j)+'_'+str(i)
p_names = 'p_'+str(k)+'_'+str(j)+'_'+str(i)
t_names = 't_'+str(k)+'_'+str(j)+'_'+str(i)
names_wrf.append(u_names)
names_wrf.append(v_names)
names_wrf.append(wspd_names)
names_wrf.append(w_names)
names_wrf.append(p_names)
names_wrf.append(t_names)
cdate+=inc