I have a number of indices and values that make up a scipy.coo_matrix
. The indices/values are generated from different subroutines and are concatenate
d together before handed over to the matrix constructor:
import numpy
from scipy import sparse
n = 100000
I0 = range(n)
J0 = range(n)
V0 = numpy.random.rand(n)
I1 = range(n)
J1 = range(n)
V1 = numpy.random.rand(n)
# [...]
I = numpy.concatenate([I0, I1])
J = numpy.concatenate([J0, J1])
V = numpy.concatenate([V0, V1])
matrix = sparse.coo_matrix((V, (I, J)), shape=(n, n))
Now, the components of (I, J, V)
can be quite large such that the concatenate operations become significant. (In the above example it takes over 20% of the runtime on my machine.) I'm reading that it's not possible to concatenate without a copy.
Is there a way for handing over indices and values without copying the input data around first?