If I understand you correctly, you have a 2D point in the projection of the rectangle, and you know the 3D (world) and 2D (image) coordinates of all four corners of the rectangle. The goal is to find the 3D coordinates of the unique point on the interior of the (3D, world) rectangle which projects to the given point.
(Do steps 1-3 below for both the 3D (world) coordinates, and the 2D (image) coordinates of the rectangle.)
- Identify (any) one corner of the rectangle as its "origin", and call it "A", which we will treat as a vector.
- Label the other vertices B, C, D, in order, so that C is diagonally opposite A.
- Calculate the vectors v=AB and w=AD. These form nice local coordinates for points in the rectangle. Points in the rectangle will be of the form A+rv+sw, where r, s, are real numbers in the range [0,1]. This fact is true in world coordinates and in image coordinates. In world coordinates, v and w are orthogonal, but in image coordinates, they are not. That's ok.
- Working in image coordinates, from the point (x,y) in the image of your rectangle, calculate the values of r and s. This can be done by linear algebra on the vector equations (x,y) = A+rv+sw, where only r and s are unknown. It will boil down to a 2x2 matrix equation, which you can solve generally in code using Cramer's rule. (This step will break if the determinant of the required matrix is zero. This corresponds to the case where the rectangle is seen edge-on. The solution isn't unique in that case. If that's possible, make special exception.)
- Using the values of r and s from 4, compute A+rv+sw using the vectors A, v, w, for world coordinates. That's the world point on the rectangle.