This is by far the best solution i have found for rotating images while avoiding cropping the image.
Rotate an image without cropping in OpenCV in C++
import cv2
def rotate_image(mat, angle):
"""
Rotates an image (angle in degrees) and expands image to avoid cropping
"""
height, width = mat.shape[:2] # image shape has 3 dimensions
image_center = (width/2, height/2) # getRotationMatrix2D needs coordinates in reverse order (width, height) compared to shape
rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.)
# rotation calculates the cos and sin, taking absolutes of those.
abs_cos = abs(rotation_mat[0,0])
abs_sin = abs(rotation_mat[0,1])
# find the new width and height bounds
bound_w = int(height * abs_sin + width * abs_cos)
bound_h = int(height * abs_cos + width * abs_sin)
# subtract old image center (bringing image back to origo) and adding the new image center coordinates
rotation_mat[0, 2] += bound_w/2 - image_center[0]
rotation_mat[1, 2] += bound_h/2 - image_center[1]
# rotate image with the new bounds and translated rotation matrix
rotated_mat = cv2.warpAffine(mat, rotation_mat, (bound_w, bound_h))
return rotated_mat
You can add checks to avoid some calculations when the angles are 90*n, but this function will work for any angle as is.
Taking advantage of numpy
vectorization
def rotate_image(img, angle):
size_reverse = np.array(img.shape[1::-1]) # swap x with y
M = cv2.getRotationMatrix2D(tuple(size_reverse / 2.), angle, 1.)
MM = np.absolute(M[:,:2])
size_new = MM @ size_reverse
M[:,-1] += (size_new - size_reverse) / 2.
return cv2.warpAffine(img, M, tuple(size_new.astype(int)))