Need apply
with function scipy.stats.beta.cdf
and axis=1
:
df['p'] = df.apply(lambda x: scipy.stats.beta.cdf(x['x'],
x['alpha'],
x['beta'],
loc=x['A'],
scale=x['B']-x['A']), axis=1)
Sample:
import scipy.stats
df = pd.DataFrame({'x':[640495496, 640495440],
'alpha':[1.5017096,1.5017045],
'beta':[628.110247, 620.110],
'A':[0,0],
'B':[148000000000,148000000000]})
print (df)
A B alpha beta x
0 0 148000000000 1.501710 628.110247 640495496
1 0 148000000000 1.501704 620.110000 640495440
df['p'] = df.apply(lambda x: scipy.stats.beta.cdf(x['x'],
x['alpha'],
x['beta'],
loc=x['A'],
scale=x['B']-x['A']), axis=1)
print (df)
A B alpha beta x p
0 0 148000000000 1.501710 628.110247 640495496 0.858060
1 0 148000000000 1.501704 620.110000 640495440 0.853758