The tf.data
API (tensorflow 1.4 onwards) is great for things like this. The pipeline will looks something like the following:
- Create an initial
tf.data.Dataset
object that iterates over all examples
- (if training)
shuffle
/repeat
the dataset;
map
it through some function that makes all images the same size;
batch
;
- (optionall)
prefetch
to tell your program to collect the preprocess subsequent batches of data while the network is processing the current batch; and
- and get inputs.
There are a number of ways of creating your initial dataset (see here for a more in depth answer)
TFRecords with Tensorflow Datasets
Supporting tensorflow version 1.12 onwards, Tensorflow datasets provides a relatively straight-forward API for creating tfrecord datasets, and also handles data downloading, sharding, statistics generation and other functionality automatically.
See e.g. this image classification dataset implementation. There's a lot of bookeeping stuff in there (download urls, citations etc), but the technical part boils down to specifying features
and writing a _generate_examples
function
features = tfds.features.FeaturesDict({
"image": tfds.features.Image(shape=(_TILES_SIZE,) * 2 + (3,)),
"label": tfds.features.ClassLabel(
names=_CLASS_NAMES),
"filename": tfds.features.Text(),
})
...
def _generate_examples(self, root_dir):
root_dir = os.path.join(root_dir, _TILES_SUBDIR)
for i, class_name in enumerate(_CLASS_NAMES):
class_dir = os.path.join(root_dir, _class_subdir(i, class_name))
fns = tf.io.gfile.listdir(class_dir)
for fn in sorted(fns):
image = _load_tif(os.path.join(class_dir, fn))
yield {
"image": image,
"label": class_name,
"filename": fn,
}
You can also generate the tfrecords
using lower level operations.
Load images via tf.data.Dataset.map
and tf.py_func(tion)
Alternatively you can load the image files from filenames inside tf.data.Dataset.map
as below.
image_paths, labels = load_base_data(...)
epoch_size = len(image_paths)
image_paths = tf.convert_to_tensor(image_paths, dtype=tf.string)
labels = tf.convert_to_tensor(labels)
dataset = tf.data.Dataset.from_tensor_slices((image_paths, labels))
if mode == 'train':
dataset = dataset.repeat().shuffle(epoch_size)
def map_fn(path, label):
# path/label represent values for a single example
image = tf.image.decode_jpeg(tf.read_file(path))
# some mapping to constant size - be careful with distorting aspec ratios
image = tf.image.resize_images(out_shape)
# color normalization - just an example
image = tf.to_float(image) * (2. / 255) - 1
return image, label
# num_parallel_calls > 1 induces intra-batch shuffling
dataset = dataset.map(map_fn, num_parallel_calls=8)
dataset = dataset.batch(batch_size)
# try one of the following
dataset = dataset.prefetch(1)
# dataset = dataset.apply(
# tf.contrib.data.prefetch_to_device('/gpu:0'))
images, labels = dataset.make_one_shot_iterator().get_next()
I've never worked in a distributed environment, but I've never noticed a performance hit from using this approach over tfrecords
. If you need more custom loading functions, also check out tf.py_func
.
More general information here, and notes on performance here