I'm trying to follow along with Abdi & Williams - Principal Component Analysis (2010) and build principal components through SVD, using numpy.linalg.svd
.
When I display the components_
attribute from a fitted PCA with sklearn, they're of the exact same magnitude as the ones that I've manually computed, but some (not all) are of opposite sign. What's causing this?
Update: my (partial) answer below contains some additional info.
Take the following example data:
from pandas_datareader.data import DataReader as dr
import numpy as np
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
# sample data - shape (20, 3), each column standardized to N~(0,1)
rates = scale(dr(['DGS5', 'DGS10', 'DGS30'], 'fred',
start='2017-01-01', end='2017-02-01').pct_change().dropna())
# with sklearn PCA:
pca = PCA().fit(rates)
print(pca.components_)
[[-0.58365629 -0.58614003 -0.56194768]
[-0.43328092 -0.36048659 0.82602486]
[-0.68674084 0.72559581 -0.04356302]]
# compare to the manual method via SVD:
u, s, Vh = np.linalg.svd(np.asmatrix(rates), full_matrices=False)
print(Vh)
[[ 0.58365629 0.58614003 0.56194768]
[ 0.43328092 0.36048659 -0.82602486]
[-0.68674084 0.72559581 -0.04356302]]
# odd: some, but not all signs reversed
print(np.isclose(Vh, -1 * pca.components_))
[[ True True True]
[ True True True]
[False False False]]