A Hermitian matrix is a complex square matrix which is equal to its conjugate transpose. Its matrix elements fulfil following condition:
Everytime, I compute eigenvectors of a Hermitian matrix using Python, the first coefficient of the eigenvector is a pure real number. Is this an attribute of Hermitian matrices?
I attach a code snippet to generate a Hermitian matrix, compute its eigenvectors and print the eigenvector corresponding to the lowest eigenvalue.
import numpy as np
from numpy import linalg as LA
N = 5 # Set size of a matrix
# Generate real part of the matrix at first
real_matrix = np.random.uniform(-1.0, 1.0, size=(N,N))
real_matrix = (real_matrix + real_matrix.T)/2
# Generate imaginary part of the matrix
imaginary_matrix = np.random.uniform(-1.0, 1.0, size=(N,N))
imaginary_matrix = (imaginary_matrix + imaginary_matrix.T)/2
imaginary_matrix = imaginary_matrix.astype(complex) * 1j
for row in range(N):
for column in range(row,N):
if row == column:
imaginary_matrix[row][column] = 0.0
else:
imaginary_matrix[row][column] *= -1
# Combine real and imaginary part
matrix = real_matrix + imaginary_matrix
# Compute and print eigenvector
eigenvalues, eigenvectors = LA.eigh(matrix)
print(eigenvectors[:,0])