Here is the code:
import tensorflow as tf
slim = tf.contrib.slim
import PIL as pillow
from PIL import Image
#import Image
from inception_resnet_v2 import *
import numpy as np
with open('imagenet1000_clsid_to_human.txt','r') as inf:
imagenet_classes = eval(inf.read())
def get_human_readable(id):
id = id - 1
label = imagenet_classes[id]
return label
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'
#Load the model
sess = tf.Session()
arg_scope = inception_resnet_v2_arg_scope()
input_tensor = tf.placeholder(tf.float32, [None, 299, 299, 3])
with slim.arg_scope(arg_scope):
logits, end_points = inception_resnet_v2(input_tensor, is_training=False)
saver = tf.train.Saver()
saver.restore(sess, checkpoint_file)
def classify_image(sample_images):
classifications = []
for image in sample_images:
im = Image.open(image).resize((299,299))
im = np.array(im)
im = im.reshape(-1,299,299,3)
im = 2*(im/255.0)-1.0
predict_values, logit_values = sess.run([end_points['Predictions'], logits], feed_dict={input_tensor: im})
#print (np.max(predict_values), np.max(logit_values))
#print (np.argmax(predict_values), np.argmax(logit_values))
label = get_human_readable(np.argmax(predict_values))
predict_value = np.max(predict_values)
classifications.append({"label":label, "predict_value":predict_value})
return classifications
I get the following error when running some images:
"ValueError: can not reshape array of size 357604 into shape (299,299.3)"
I do not understand where it comes from. Indeed, the image is resized (299, 299) before being reshape. I do not understand because most of my images work, except a few ...
Did you have any idea about the cause of this problem?
Thank you in advance :)
SOLUTION:
I converted my image to RGB using the code provided here: Convert RGBA PNG to RGB with PIL
Now everything works perfectly :) Thank you so much for your help!