I am getting an exception when attempting to apply a custom rolling function to a pandas data frame. For example:
import statsmodels.api as sm
import pandas as pd
import numpy as np
def univar_regr_beta(y, x):
Y, X = y.as_matrix(), x.as_matrix()
X = sm.add_constant(X)
model = sm.OLS(Y, X)
return model.fit().params[1]
df = pd.DataFrame(np.random.randn(20,3))
srs = pd.Series(np.random.randn(20))
# this returns a value e.g.: 0.06608957
univar_regr_beta(df[0], srs)
# and this returns a rolling sum dataframe
df.rolling(5, 5).apply(np.sum)
# but this breaks when attemp to get rolling beta
df.rolling(5, 5).apply(lambda x: univar_regr_beta(x, srs))
Specifically the exception I get is the following:
AttributeError: 'numpy.ndarray' object has no attribute 'as_matrix'
It looks as though when each column is passed into univar_regr_beta via lambda, that it is being passed as a bumpy array as opposed to a Series. I am not sure if there is a better way to achieve a rolling beta, or if I am just missing something.
Any help is appreciated. Thanks