I am trying to apply a rolling function, with a 3 year window, on a pandas dataframe.
import pandas as pd
# Dummy data
df = pd.DataFrame({'Product': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
'Year': [2015, 2016, 2017, 2018, 2015, 2016, 2017, 2018],
'IB': [2, 5, 8, 10, 7, 5, 10, 14],
'OB': [5, 8, 10, 12, 5, 10, 14, 20],
'Delta': [2, 2, 1, 3, -1, 3, 2, 4]})
# The function to be applied
def get_ln_rate(ib, ob, delta):
n_years = len(ib)
return sum(delta)*np.log(ob[-1]/ib[0]) / (n_years * (ob[-1] - ib[0]))
The expected output is
Product Year IB OB Delta Ln_Rate
0 A 2015 2 5 2
1 A 2016 5 8 2
2 A 2017 8 10 1 0.3353
3 A 2018 10 12 3 0.2501
4 B 2015 7 5 -1
5 B 2016 5 10 3
6 B 2017 10 14 2 0.1320
7 B 2018 14 20 4 0.2773
I have tried
df['Ln_Rate'] = df.groupby('Product').rolling(3).apply(lambda x: get_ln_rate(x['IB'], x['OB'], x['Delta']))
But this does not work.
I have found several similar posts
applying custom rolling function to dataframe - this one does not have a clear answer
Pandas Rolling Apply custom - this one does not have multiple arguments
apply custom function on pandas dataframe on a rolling window - this one has rolling.apply
... but it doesn't show the syntax.
Neither seems to be spot on. Any pointers towards the correct syntax would be greatly appreciated.