First of all, I could not draw the graphics myself. Because, unfortunately I have no computer and mathematical software.. I do not know how to use these softwares.
I need to create a discrete probabilistic distribution plot of the following values.
I tried Wolfram Alpha (as an online software), but it is impossible to do so because the number of values is so long.
EXAMPLE:
I would like to set up a graph similar to the graphs of the following distribution functions:
P_1(x)={ 3/42,3/42,4/42,3/42,4/42,5/42,3/42,3/42,1/42,2/42,2/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,0/42,1/42,1/42,2/42,2/42,2/42,1/42}
P_2(x)={ 4/170,6/170,8/170,6/170,8/170,11/170,8/170,9/170,6/170,6/170,8/170,4/170,7/170,3/170,5/170,3/170,3/170,3/170,0/170,1/170,0/170,1/170,2/170,2/170,1/170,0/170,1/170,1/170,1/170,2/170,2/170,2/170,2/170,2/170,2/170,2/170,3/170,3/170,4/170,5/170,4/170,6/170,4/170,4/170,1/170,2/170,1/170,0/170,0/170,0/170,0/170,1/170}
P_3(x)={ 5/682,9/682,13/682,15/682,20/682,25/682,25/682,34/682,21/682,26/682,24/682,21/682,26/682,19/682,21/682,22/682,14/682,20/682,10/682,13/682,10/682,6/682,11/682,6/682,8/682,3/682,4/682,5/682,5/682,8/682,5/682,9/682,7/682,9/682,10/682,5/682,5/682,5/682,7/682,11/682,11/682,15/682,13/682,16/682,11/682,15/682,18/682,9/682,9/682,3/682,6/682,10/682,5/682,4/682,2/682,2/682,1/682,0/682,1/682,0/682,2/682,1/682,1/682,3/682,1/682,1/682}
P_4(x)={ 6/2730,12/2730,22/2730,28/2730,41/2730,55/2730,58/2730,80/2730,68/2730,91/2730,84/2730,72/2730,87/2730,65/2730,82/2730,89/2730,61/2730,80/2730,51/2730,66/2730,49/2730,47/2730,61/2730,39/2730,50/2730,21/2730,31/2730,34/2730,24/2730,40/2730,23/2730,36/2730,34/2730,31/2730,44/2730,27/2730,33/2730,18/2730,25/2730,37/2730,33/2730,50/2730,35/2730,52/2730,40/2730,52/2730,66/2730,45/2730,48/2730,32/2730,34/2730,43/2730,32/2730,37/2730,22/2730,29/2730,21/2730,15/2730,22/2730,10/2730,18/2730,11/2730,15/2730,22/2730,10/2730,13/2730,1/2730,4/2730,4/2730,1/2730,2/2730,1/2730,2/2730,0/2730,1/2730,2/2730,0/2730,1/2730,1/2730,0/2730,0/2730,0/2730,0/2730,0/2730,0/2730,0/2730,1/2730}
P_5(x)={ 7/10922,17/10922,33/10922,47/10922,77/10922,108/10922,126/10922,179/10922,167/10922,226/10922,245/10922,235/10922,308/10922,224/10922,303/10922,300/10922,263/10922,318/10922,216/10922,278/10922,204/10922,238/10922,282/10922,180/10922,229/10922,138/10922,185/10922,211/10922,145/10922,194/10922,122/10922,168/10922,137/10922,136/10922,168/10922,113/10922,150/10922,93/10922,123/10922,132/10922,118/10922,165/10922,124/10922,174/10922,156/10922,167/10922,215/10922,150/10922,204/10922,134/10922,167/10922,208/10922,127/10922,180/10922,107/10922,145/10922,119/10922,97/10922,131/10922,81/10922,100/10922,63/10922,78/10922,99/10922,61/10922,83/10922,43/10922,56/10922,58/10922,35/10922,46/10922,19/10922,26/10922,13/10922,14/10922,18/10922,7/10922,8/10922,4/10922,8/10922,9/10922,3/10922,6/10922,2/10922,6/10922,4/10922,6/10922,11/10922,5/10922,6/10922,2/10922,3/10922,6/10922,2/10922,4/10922,4/10922,2/10922,1/10922,2/10922,2/10922,1/10922,2/10922}
P_6(x)={ 8/43690,22/43690,48/43690,77/43690,133/43690,196/43690,262/43690,391/43690,396/43690,550/43690,607/43690,656/43690,877/43690,689/43690,919/43690,922/43690,904/43690,1104/43690,823/43690,1058/43690,806/43690,919/43690,1120/43690,792/43690,1028/43690,647/43690,876/43690,930/43690,721/43690,876/43690,585/43690,741/43690,621/43690,615/43690,777/43690,528/43690,695/43690,420/43690,544/43690,608/43690,488/43690,656/43690,458/43690,620/43690,588/43690,591/43690,775/43690,545/43690,761/43690,507/43690,666/43690,818/43690,551/43690,735/43690,466/43690,626/43690,560/43690,505/43690,659/43690,387/43690,509/43690,307/43690,401/43690,541/43690,314/43690,438/43690,259/43690,339/43690,361/43690,234/43690,318/43690,154/43690,214/43690,125/43690,161/43690,196/43690,90/43690,125/43690,61/43690,95/43690,114/43690,58/43690,88/43690,39/43690,65/43690,36/43690,43/43690,72/43690,41/43690,49/43690,28/43690,41/43690,50/43690,27/43690,32/43690,16/43690,25/43690,12/43690,20/43690,28/43690,11/43690,13/43690,6/43690,9/43690,13/43690,2/43690,6/43690,2/43690,2/43690,3/43690,3/43690,10/43690,3/43690,7/43690,2/43690,3/43690,4/43690,2/43690,4/43690,0/43690,1/43690,1/43690,1/43690,1/43690,1/43690,0/43690,0/43690,0/43690,1/43690}
P_7(x)={ 9/174762,27/174762,67/174762,118/174762,220/174762,348/174762,486/174762,771/174762,825/174762,1214/174762,1373/174762,1633/174762,2257/174762,1906/174762,2554/174762,2557/174762,2737/174762,3353/174762,2728/174762,3572/174762,2798/174762,3278/174762,3935/174762,3040/174762,3969/174762,2675/174762,3469/174762,3713/174762,2907/174762,3630/174762,2491/174762,3269/174762,2647/174762,2733/174762,3408/174762,2315/174762,3043/174762,1931/174762,2584/174762,2710/174762,2155/174762,2789/174762,1904/174762,2566/174762,2473/174762,2331/174762,3061/174762,2134/174762,2871/174762,1939/174762,2595/174762,3186/174762,2249/174762,3031/174762,1967/174762,2575/174762,2440/174762,2253/174762,2909/174762,1827/174762,2398/174762,1549/174762,1992/174762,2595/174762,1593/174762,2098/174762,1248/174762,1661/174762,1819/174762,1347/174762,1741/174762,991/174762,1320/174762,792/174762,964/174762,1310/174762,710/174762,939/174762,507/174762,694/174762,826/174762,473/174762,651/174762,341/174762,468/174762,264/174762,328/174762,494/174762,253/174762,357/174762,179/174762,263/174762,348/174762,180/174762,273/174762,130/174762,193/174762,133/174762,157/174762,209/174762,100/174762,138/174762,63/174762,91/174762,130/174762,58/174762,79/174762,40/174762,67/174762,58/174762,53/174762,77/174762,40/174762,53/174762,24/174762,32/174762,48/174762,22/174762,35/174762,20/174762,25/174762,28/174762,14/174762,17/174762,11/174762,15/174762,5/174762,8/174762,17/174762,7/174762,8/174762,2/174762,2/174762,4/174762,4/174762,8/174762,2/174762,2/174762,0/174762,1/174762,3/174762,1/174762,3/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,2/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,0/174762,1/174762,1/174762}
P_8(x)={ 10/699050,34/699050,90/699050,176/699050,350/699050,577/699050,871/699050,1436/699050,1657/699050,2534/699050,2966/699050,3764/699050,5358/699050,4882/699050,6698/699050,6791/699050,7702/699050,9604/699050,8231/699050,10947/699050,8918/699050,10913/699050,12958/699050,10509/699050,13828/699050,9786/699050,12794/699050,13566/699050,11358/699050,14039/699050,9970/699050,13110/699050,10714/699050,11362/699050,14112/699050,9696/699050,12748/699050,8299/699050,10977/699050,11669/699050,9297/699050,11941/699050,8009/699050,10755/699050,10446/699050,9502/699050,12403/699050,8392/699050,11276/699050,7651/699050,10182/699050,12325/699050,9126/699050,12174/699050,8067/699050,10627/699050,10042/699050,9292/699050,12137/699050,7975/699050,10516/699050,6945/699050,8760/699050,11373/699050,7282/699050,9587/699050,5943/699050,7862/699050,8529/699050,6461/699050,8474/699050,5139/699050,6852/699050,4337/699050,5341/699050,6935/699050,4055/699050,5350/699050,3019/699050,4024/699050,4776/699050,3023/699050,4058/699050,2251/699050,3039/699050,1851/699050,2247/699050,3039/699050,1720/699050,2289/699050,1249/699050,1742/699050,2273/699050,1290/699050,1830/699050,987/699050,1372/699050,972/699050,978/699050,1372/699050,767/699050,1038/699050,538/699050,722/699050,994/699050,529/699050,710/699050,367/699050,535/699050,509/699050,393/699050,589/699050,316/699050,401/699050,226/699050,297/699050,389/699050,197/699050,290/699050,143/699050,202/699050,226/699050,147/699050,211/699050,103/699050,140/699050,79/699050,101/699050,142/699050,67/699050,106/699050,51/699050,67/699050,75/699050,46/699050,65/699050,32/699050,45/699050,36/699050,42/699050,55/699050,24/699050,34/699050,11/699050,12/699050,25/699050,9/699050,21/699050,8/699050,17/699050,10/699050,9/699050,11/699050,5/699050,14/699050,5/699050,7/699050,6/699050,3/699050,7/699050,4/699050,5/699050,7/699050,6/699050,6/699050,3/699050,2/699050,0/699050,1/699050,2/699050,0/699050,2/699050,2/699050,3/699050,2/699050,2/699050,0/699050,0/699050,0/699050,0/699050,1/699050,1/699050,0/699050,0/699050,0/699050,1/699050,2/699050,1/699050,2/699050,0/699050,0/699050,0/699050,0/699050,1/699050,1/699050,2/699050}
P_9(x)={ 11/2796202,41/2796202,118/2796202,251/2796202,532/2796202,924/2796202,1500/2796202,2580/2796202,3164/2796202,5018/2796202,6108/2796202,8193/2796202,12030/2796202,11599/2796202,16410/2796202,16947/2796202,20329/2796202,25638/2796202,23361/2796202,31525/2796202,26494/2796202,33543/2796202,39633/2796202,33833/2796202,44866/2796202,33020/2796202,43543/2796202,45974/2796202,41030/2796202,50612/2796202,37388/2796202,49151/2796202,40472/2796202,44081/2796202,54221/2796202,38847/2796202,51156/2796202,33921/2796202,44680/2796202,48127/2796202,38710/2796202,48902/2796202,33436/2796202,44407/2796202,43373/2796202,39062/2796202,50116/2796202,34268/2796202,45652/2796202,30338/2796202,40610/2796202,47920/2796202,36278/2796202,48435/2796202,32356/2796202,42939/2796202,41366/2796202,37675/2796202,49334/2796202,33062/2796202,43626/2796202,29838/2796202,37507/2796202,48140/2796202,31771/2796202,42095/2796202,26739/2796202,35539/2796202,37571/2796202,29438/2796202,38388/2796202,24218/2796202,32092/2796202,21490/2796202,26087/2796202,33871/2796202,20799/2796202,27405/2796202,16238/2796202,21484/2796202,25225/2796202,16608/2796202,22120/2796202,12875/2796202,17174/2796202,10980/2796202,13179/2796202,17537/2796202,10097/2796202,13580/2796202,7732/2796202,10423/2796202,13393/2796202,7912/2796202,10700/2796202,6146/2796202,8242/2796202,6077/2796202,6224/2796202,8464/2796202,4728/2796202,6495/2796202,3578/2796202,4873/2796202,6457/2796202,3565/2796202,4909/2796202,2640/2796202,3644/2796202,3535/2796202,2742/2796202,3829/2796202,2090/2796202,2847/2796202,1587/2796202,2128/2796202,2914/2796202,1549/2796202,2116/2796202,1147/2796202,1600/2796202,1751/2796202,1134/2796202,1596/2796202,838/2796202,1190/2796202,645/2796202,836/2796202,1169/2796202,600/2796202,853/2796202,452/2796202,668/2796202,780/2796202,409/2796202,581/2796202,292/2796202,423/2796202,278/2796202,324/2796202,474/2796202,242/2796202,334/2796202,158/2796202,234/2796202,327/2796202,166/2796202,234/2796202,114/2796202,165/2796202,110/2796202,107/2796202,171/2796202,84/2796202,138/2796202,66/2796202,86/2796202,114/2796202,56/2796202,78/2796202,41/2796202,57/2796202,70/2796202,49/2796202,63/2796202,26/2796202,49/2796202,25/2796202,36/2796202,51/2796202,14/2796202,22/2796202,12/2796202,18/2796202,23/2796202,20/2796202,20/2796202,6/2796202,11/2796202,4/2796202,10/2796202,15/2796202,9/2796202,10/2796202,5/2796202,8/2796202,11/2796202,6/2796202,10/2796202,6/2796202,9/2796202,5/2796202,8/2796202,14/2796202,7/2796202,14/2796202,7/2796202,7/2796202,5/2796202,1/2796202,5/2796202,1/2796202,2/2796202,4/2796202,1/2796202,3/2796202,3/2796202,3/2796202,1/2796202,3/2796202,3/2796202,0/2796202,1/2796202,0/2796202,0/2796202,1/2796202,1/2796202,1/2796202,0/2796202,0/2796202,0/2796202,1/2796202}
Where, x={1,2,3,4,5,.....{up to the number of given values}
In fact this question is a mathematical question: What mathematical functions do these probabilistic distributions simulate? But since I can not make graphics, I can not answer..I just need help to create graphics.
Endless thanks for any help..
A sample drawing I need: