You might check this code:
def resize_image_with_crop_or_pad(image, img_size=(64, 64, 64), **kwargs):
"""Image resizing. Resizes image by cropping or padding dimension
to fit specified size.
Args:
image (np.ndarray): image to be resized
img_size (list or tuple): new image size
kwargs (): additional arguments to be passed to np.pad
Returns:
np.ndarray: resized image
"""
assert isinstance(image, (np.ndarray, np.generic))
assert (image.ndim - 1 == len(img_size) or image.ndim == len(img_size)), \
'Example size doesnt fit image size'
# Get the image dimensionality
rank = len(img_size)
# Create placeholders for the new shape
from_indices = [[0, image.shape[dim]] for dim in range(rank)]
to_padding = [[0, 0] for dim in range(rank)]
slicer = [slice(None)] * rank
# For each dimensions find whether it is supposed to be cropped or padded
for i in range(rank):
if image.shape[i] < img_size[i]:
to_padding[i][0] = (img_size[i] - image.shape[i]) // 2
to_padding[i][1] = img_size[i] - image.shape[i] - to_padding[i][0]
else:
from_indices[i][0] = int(np.floor((image.shape[i] - img_size[i]) / 2.))
from_indices[i][1] = from_indices[i][0] + img_size[i]
# Create slicer object to crop or leave each dimension
slicer[i] = slice(from_indices[i][0], from_indices[i][1])
# Pad the cropped image to extend the missing dimension
return np.pad(image[slicer], to_padding, **kwargs)
source: Usefull Python codes for MRI images