Currently I have two data frames representing excel spreadsheets. I wish to join the data where the dates are equal. This is a one to many join as one spread sheet has a date then I need to add data which has multiple rows with the same date
an example:
A B
date data date data
0 2015-0-1 ... 0 2015-0-1 to 2015-0-2 ...
1 2015-0-2 ... 1 2015-0-1 to 2015-0-2 ...
In this case both rows from A would recieve rows 0 and 1 from B because they are in that range.
I tried using
df3 = pandas.merge(df2, df1, how='right', validate='1:m', left_on='Travel Date/Range', right_on='End')
to accomplish this but received this error.
Traceback (most recent call last):
File "<pyshell#61>", line 1, in <module>
df3 = pandas.merge(df2, df1, how='right', validate='1:m', left_on='Travel Date/Range', right_on='End')
File "C:\Users\M199449\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 61, in merge
validate=validate)
File "C:\Users\M199449\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 555, in __init__
self._maybe_coerce_merge_keys()
File "C:\Users\M199449\AppData\Local\Programs\Python\Python36\lib\site-packages\pandas\core\reshape\merge.py", line 990, in _maybe_coerce_merge_keys
raise ValueError(msg)
ValueError: You are trying to merge on object and datetime64[ns] columns. If you wish to proceed you should use pd.concat
I can add more information as needed of course