I am using Keras with tensorflow-gpu in backend, I don't have tensorflow (CPU - version) installed, all the outputs show GPU selected but tf is using CPU and system memory
when i run my code the output is: output_code
I even ran device_lib.list_local_device() and the output is: list_local_devices_output
After running the code I tried nvidia-smi to see the usage of gpu and the output is: nvidia-smi output
Tensorflow-gpu = "1.12.0"
CUDA toolkit = "9.0"
cuDNN = "7.4.1.5"
Environment Variables contain:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\libnvvp;
C:\WINDOWS\system32;
C:\WINDOWS;
C:\WINDOWS\System32\Wbem;
C:\WINDOWS\System32\WindowsPowerShell\v1.0\;
C:\WINDOWS\System32\OpenSSH\;
C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common;
D:\Anaconda3;D:\Anaconda3\Library\mingw-w64\bin
D:\Anaconda3\Library\usr\bin;
D:\Anaconda3\Library\bin;
D:\Anaconda3\Scripts;D:\ffmpeg\bin\;
But still when i check for memory usage in task manager the output is
CPU utilization 51%, RAM utilization 86% GPU utilization 1%, GPU-RAM utilization 0% Task_manager_Output So, I think it is still using CPU instead of GPU.
System Configuration:
Windows-10 64 bit; IDE: Liclipse; Python: 3.6.5