I have an iterative process that runs with different parameter values each iteration and I want to collect the parameter values and results and put them in a Pandas dataframe with a multi-index built from the sets of parameter values (which are unique).
Each iteration, the parameter values are in a dictionary like this say:
params = {'p': 2, 'q': 7}
So it is easy to collect them in a list along with the results:
results_index = [
{'p': 2, 'q': 7},
{'p': 2, 'q': 5},
{'p': 1, 'q': 4},
{'p': 2, 'q': 4}
]
results_data = [
{'A': 0.18, 'B': 0.18},
{'A': 0.67, 'B': 0.21},
{'A': 0.96, 'B': 0.45},
{'A': 0.58, 'B': 0.66}
]
But I can't find an easy way to produce the desired multi-index from results_index
.
I tried this:
df = pd.DataFrame(results_data, index=results_index)
But it produces this:
A B
{'p': 2, 'q': 7} 0.18 0.18
{'p': 2, 'q': 5} 0.67 0.21
{'p': 1, 'q': 4} 0.96 0.45
{'p': 2, 'q': 4} 0.58 0.66
(The index did not convert into a MultiIndex)
What I want is this:
A B
p q
2 7 0.18 0.18
5 0.67 0.21
1 4 0.96 0.45
2 4 0.58 0.66
This works, but there must be an easier way:
df = pd.concat([pd.DataFrame(results_index), pd.DataFrame(results_data)], axis=1).set_index(['p', 'q'])
UPDATE:
Also, this works but makes me nervous because how can I be sure the parameter values are aligned with the level names?
index = pd.MultiIndex.from_tuples([tuple(i.values()) for i in results_index],
names=results_index[0].keys())
df = pd.DataFrame(results_data, index=index)
A B
p q
2 7 0.18 0.18
5 0.67 0.21
1 4 0.96 0.45
2 4 0.58 0.66