I have a Time series data for almost 5 years. Using this data I want to forecast next 2 years. How to do this?
I referred many websites regarding this. I noticed that mostly predictions are done only with same set of data used for training they are not forecasting for future such as for next 30 days. If it possible to achieve this via TensorFlow. May I know how to achieve this?
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dropout
dataset_train = pd.read_csv(r'C:\Users\Kavin\source\repos\SampleTensorFlow\SampleTensorFlow\data\traindataset.csv')
training_set = dataset_train.iloc[:, 1:2].values
sc = MinMaxScaler(feature_range = (0, 1))
training_set_scaled = sc.fit_transform(training_set)
X_train = []
y_train = []
for i in range(60, 2035):
X_train.append(training_set_scaled[i-60:i, 0])
y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
regressor = Sequential()
regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))
regressor.add(Dense(units = 1))
regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')
regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)
dataset_test = pd.read_csv(r'C:\Users\Kavin\source\repos\SampleTensorFlow\SampleTensorFlow\data\testdataset.csv')
result = dataset_test[['Date','Open']]
real_stock_price = dataset_test.iloc[:, 1:2].values
dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X_test = []
for i in range(60, 76):
X_test.append(inputs[i-60:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
result['PredictedResult'] = pd.Series(predicted_stock_price.ravel(), index=result.index)
result.to_csv(r"C:\Users\Kavin\Downloads\PredictedStocks.csv", index=False)
ax = plt.gca()
result.plot(kind='line', x='Date', y='Open', color='red', label = 'Real Stock Price', ax=ax)
result.plot(kind='line', x='Date', y='PredictedResult', color='blue', label = 'Predicted Stock Price', ax=ax)
plt.show()