I haven't seen any answer that uses bit-fiddling inside the IEEE-754 Double representation, so here's one.
Based on the observation that a rollover to a next binary exponent is the same as adding 1
to the binary representation (actually this is by design):
Double.longBitsToDouble(0x3ff0000000000000L) // 1.0
Double.longBitsToDouble(0x3ffFFFFFFFFFFFFFL) // 1.9999999999999998
Double.longBitsToDouble(0x4000000000000000L) // 2.0
I came up with this:
long l = ThreadLocalRandom.current().nextLong(0x0010000000000001L);
double r = Double.longBitsToDouble(l + 0x3ff0000000000000L) - 1.5;
This technique works only with ranges that span a binary number (1, 2, 4, 8, 0.5, 0.25, etc) but for those ranges this approach is possibly the most efficient and accurate. This example is tuned for a span of 1. For ranges that do not span a binary range, you can still use this technique to get a different span. Apply the technique to get a number in the range [0, 1] and scale the result to the desired span. This has negligible accuracy loss, and the resulting accuracy is actually identical to that of Random.nextDouble(double, double)
.
For other spans, execute this code to find the offset:
double span = 0.125;
if (!(span > 0.0) || (Double.doubleToLongBits(span) & 0x000FFFFFFFFFFFFFL) != 0)
throw new IllegalArgumentException("'span' is not a binary number: " + span);
if (span * 2 >= Double.MAX_VALUE)
throw new IllegalArgumentException("'span' is too large: " + span);
System.out.println("Offset: 0x" + Long.toHexString(Double.doubleToLongBits(span)));
When you plug this offset into the second line of the actual code, you get a value in the range [span, 2*span]. Subtract the span
to get a value starting at 0.