I am working on a text classification project and trying to use SVC(kernel= 'linear') to get the feature importance. Here is my code:
(I changed the code from this post)
X = df1[features]
y = df1['label']
# Create selector class for text and numbers
class TextSelector(BaseEstimator, TransformerMixin):
"""Transformer to select a single column from the data frame to perform additional transformations on"""
def __init__(self, key):
self.key = key
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.key]
class NumberSelector(BaseEstimator, TransformerMixin):
"""For data grouped by feature, select subset of data at a provided key."""
def __init__(self, key):
self.key = key
def fit(self, X, y=None):
return self
def transform(self, X):
return X[[self.key]]
scaler = StandardScaler()
text = Pipeline([
('selector', TextSelector(key='title_mainText')),
('vect', TfidfVectorizer(ngram_range=(1, 2))),
])
upper_title = Pipeline([
('selector', NumberSelector(key='upper_title')),
('standard', scaler),
])
upper_mainText = Pipeline([
('selector', NumberSelector(key='upper_mainText')),
('standard', scaler),
])
punct_title = Pipeline([
('selector', NumberSelector(key='punct_title')),
('standard', scaler),
])
punct_mainText = Pipeline([
('selector', NumberSelector(key='punct_mainText')),
('standard', scaler),
])
exclamations_title = Pipeline([
('selector', NumberSelector(key='exclamations_title')),
('standard', scaler),
])
exclamations_text = Pipeline([
('selector', NumberSelector(key='exclamations_text')),
('standard', scaler),
])
feats = FeatureUnion([('title_mainText', text),
('upper_title', upper_title),
('upper_mainText', upper_mainText),
('punct_title', punct_title),
('punct_mainText', punct_mainText),
('exclamations_text', exclamations_text),
('exclamations_title', exclamations_title),
feature_processing = Pipeline([('feats', feats)])
pipeline = Pipeline([
('features', feats),
('classifier', SVC(C=1, kernel= 'linear', max_iter= 1000, tol=0.0001, probability=True))
])
def f_importances(coef, names):
imp = coef
imp,names = zip(*sorted(zip(imp,names)))
plt.barh(range(len(names)), imp, align='center')
plt.yticks(range(len(names)), names)
plt.show()
features_names = ['title_mainText', 'upper_title', 'upper_mainText', 'punct_title', 'punct_mainText',
'exclamations_title', 'exclamations_text']
pipeline.fit(X, y)
clf = pipeline.named_steps['classifier']
f_importances(clf.coef_, features_names)
However, it shows an error message, and I don't know where I have done wrong. Did someone have the experience with this before?
ValueError Traceback (most recent call last) in () 13 pipeline.fit(X, y) 14 clf = pipeline.named_steps['classifier'] ---> 15 f_importances((clf.coef_[0]), features_names) 16
in f_importances(coef, names) 5 imp = coef 6 imp,names = zip(*sorted(zip(imp,names))) ----> 7 plt.barh(range(len(names)), imp, align='center') 8 plt.yticks(range(len(names)), names) 9 plt.show()
/anaconda3/lib/python3.6/site-packages/matplotlib/pyplot.py in barh(*args, **kwargs) 2667 mplDeprecation)
2668 try: -> 2669 ret = ax.barh(*args, **kwargs) 2670 finally: 2671 ax._hold = washold/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py in barh(self, *args, **kwargs) 2281
kwargs.setdefault('orientation', 'horizontal') 2282 patches = self.bar(x=left, height=height, width=width, -> 2283 bottom=y, **kwargs) 2284 return patches 2285/anaconda3/lib/python3.6/site-packages/matplotlib/init.py in inner(ax, *args, **kwargs) 1715
warnings.warn(msg % (label_namer, func.name), 1716
RuntimeWarning, stacklevel=2) -> 1717 return func(ax, *args, **kwargs) 1718 pre_doc = inner.doc 1719 if pre_doc is None:/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py in bar(self, *args, **kwargs) 2091 elif orientation == 'horizontal': 2092 r.sticky_edges.x.append(l) -> 2093 self.add_patch(r) 2094 patches.append(r) 2095
/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_base.py in add_patch(self, p) 1852 if p.get_clip_path() is None:
1853 p.set_clip_path(self.patch) -> 1854 self._update_patch_limits(p) 1855 self.patches.append(p) 1856 p._remove_method = lambda h: self.patches.remove(h)/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_base.py in _update_patch_limits(self, patch) 1868 # or height. 1869 if (isinstance(patch, mpatches.Rectangle) and -> 1870 ((not patch.get_width()) and (not patch.get_height()))): 1871 return 1872
vertices = patch.get_path().vertices/anaconda3/lib/python3.6/site-packages/scipy/sparse/base.py in bool(self) 286 return self.nnz != 0 287 else: --> 288 raise ValueError("The truth value of an array with more than one " 289 "element is ambiguous. Use a.any() or a.all().") 290 nonzero = bool
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all().
Thank you!