I want to apply Apriori Algorithm to the retail dataset (market basket data from retail store). It has data in the form:-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32
33 34 35
36 37 38 39 40 41 42 43 44 45 46
38 39 47 48
38 39 48 49 50 51 52 53 54 55 56 57 58
32 41 59 60 61 62
3 39 48
So, in order to use Apriori algorithm I need the data in the form of a Python list of lists into a Numpy array as:-
Column Names as 0 1 2 3 4 5 6 7 8 9 10........
Dataset as:
0 1 2 3 4 5 6 7 8 9 10 .........30 31 32 33 34 35....
1 1 1 1 1 1 1 1 1 1 1...........0 0 0 0 0 0...
0 0 0 0 0 0 0 0 0 0 0...........1 1 1 0 0 0..
and so on..
For this I am trying to use Transaction Encoder:-
dataset = pd.read_csv('retail.dat', header=None)
from mlxtend.preprocessing import TransactionEncoder
transactionEncoder = TransactionEncoder()
dataset = transactionEncoder.fit(dataset).transform(dataset)
dataset.astype('int')
print(dataset)
But I am getting the error:-
TypeError: 'int' object is not iterable
I also want to attach column names as 0 1 2.... to the newly formed dataset, but print(transactionEncoder.columns_)
not giving valid columns. Please tell what can be the issue and what is the correct method to apply Transaction Encoder on this dataset...