0

I have this dataframe:

np.random.seed(0)
df = pd.DataFrame({"Status": np.random.choice(["Married", "Single", "Single", "Single", "Widow"], 10000),
               "Genre": np.random.choice(["Masculine", "Masculine", "Masculine", "Femenine"], 10000),
               "Count": 1}).groupby(["Status", "Genre"]).agg("sum").reset_index()
df


    Status  Genre       Count
0   Married Femenine    485
1   Married Masculine   1520
2   Single  Femenine    1493
3   Single  Masculine   4552
4   Widow   Femenine    520
5   Widow   Masculine   1430

I'm looking to change it where the columns are the Genre values, and an index with the Status values, like:

            Single  Married  Widow  
Masculine   4552    1520     1430
Femenine    1493    485      520

I have tried with a mix of melt() and .T, but still isn't working. I'm looking for a general approach, as I have 5 Genre values and 20 Status values.

Chris
  • 2,019
  • 5
  • 22
  • 67

0 Answers0