I'm looking to remove the outlier data points in the clusters after k means clustering and using this way to do so in R :-
1.)Plot the graph:-
plot(sort(df[[1]]$var))
plot(sort(df[[2]]$var))
2.)From the graph see the outlier( in my case extreme )data points.
rownames(df[[1]])<-1:nrow(df[[1]])
rownames(df[[2]])<-1:nrow(df[[2]])
3.)Go to view(df[[1]])
,view(df[[2]])
sort the var
in descending order and note down those row index numbers which are the outlier data points and remove those rows from df[[1]]
,df[[2]]
df[[1]]<-df[[1]][-c(200,320,216),]
df[[2]]<-df[[2]][-c(7000,1200,2320),]
df is a list with 3 elements , df[[1]]
access the first element/ cluster
Is there any other easy and efficient way to achieve the same?