I am unable to understand the logic behind getting the output shape of the first hidden layer. I have taken some arbitrary examples as follows;
Example 1:
model.add(Dense(units=4,activation='linear',input_shape=(784,)))
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_4"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_7 (Dense) (None, 4) 3140
_________________________________________________________________
dense_8 (Dense) (None, 10) 50
=================================================================
Total params: 3,190
Trainable params: 3,190
Non-trainable params: 0
Example 2:
model.add(Dense(units=4,activation='linear',input_shape=(784,1)))
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_6"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_11 (Dense) (None, 784, 4) 8
_________________________________________________________________
dense_12 (Dense) (None, 784, 10) 50
=================================================================
Total params: 58
Trainable params: 58
Non-trainable params: 0
Example 3:
model.add(Dense(units=4,activation='linear',input_shape=(32,28)))
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_8"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_15 (Dense) (None, 32, 4) 116
_________________________________________________________________
dense_16 (Dense) (None, 32, 10) 50
=================================================================
Total params: 166
Trainable params: 166
Non-trainable params: 0
Example 4:
model.add(Dense(units=4,activation='linear',input_shape=(32,28,1)))
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_9"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_17 (Dense) (None, 32, 28, 4) 8
_________________________________________________________________
dense_18 (Dense) (None, 32, 28, 10) 50
=================================================================
Total params: 58
Trainable params: 58
Non-trainable params: 0
Please help me in understanding the logic.
Also, I think the rank of input_shape=(784,)
and input_shape=(784,1)
is the same then why is their Output Shape
different?