I'm trying to access predictions of intermediate layers of a model during training using custom callback. Following stripped down version of the actual code demonstrates the issue.
import tensorflow as tf
import numpy as np
class Model(tf.keras.Model):
def __init__(self, input_shape=None, name="cus_model", **kwargs):
super(Model, self).__init__(name=name, **kwargs)
def build(self, input_shape):
self.dense1 = tf.keras.layers.Dense(input_shape=input_shape, units=32)
def call(self, input_tensor):
return self.dense1(input_tensor)
class CustomCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
get_output = tf.keras.backend.function(
inputs = self.model.layers[0].input,
outputs = self.model.layers[0].output
)
print("Layer output: ",get_output.outputs)
X = np.ones((8,16))
y = np.sum(X, axis=1)
model = Model()
model.compile(optimizer='adam',loss='mean_squared_error', metrics='accuracy')
model.fit(X,y, epochs=8, callbacks=[CustomCallback()])
The callback is written as suggested in this answer. Getting following error:
<ipython-input-3-635fd53dbffc> in on_epoch_end(self, epoch, logs)
12 def on_epoch_end(self, epoch, logs=None):
13 get_output = tf.keras.backend.function(
---> 14 inputs = self.model.layers[0].input,
15 outputs = self.model.layers[0].output
16 )
.
.
AttributeError: Layer dense is not connected, no input to return.
What's causing this? How to resolve it?