I have data in a hdf5 file with named datasets
#Data Aquisition and manipulation
file = h5py.File('C:/Users/machz/Downloads/20200715_000_Scan_XY-Coordinate_NV-centre_APD.h5', 'r')
filename = path.basename(file.filename)
intensity = file.get('intensity')
intensity = np.array(intensity)
x_range = file.get('x range')
x_range = np.array(x_range)
x_range = np.round(x_range,1)
z_range = file.get('z range')
z_range = np.array(z_range)
z_range=np.round(z_range,1)
where intensity is a 2D array and x_range and z_range are 1D arrays. Now i want to smooth the intensity data. The raw data looks for example like this:
by using seaborn.heatmap
:
heat_map = sb.heatmap(intensity, cmap="Spectral_r")
When using matplotlib.contourf
via
plt.contourf(intensity, 1000, cmap="Spectral_r")
i get the following result:
which looks oke, despite it is rotated by 180 degrees. But how can I get rid of the distortion in x and y direction and get round spots? Is there a more elegant way to smooth a 2D array / matrix? - I have read somthing about Kernel density Estimation (KDE), but it looks complex.
Edit: Result by applying ´´´intensity_smooth = gaussian_filter(intensity, sigma=1, order=0)```:
The points with high intensity are dissolving, but I want sharp intensity maximas with a soft transition between two values of the matrix (see first pic).