I have an upload folder that gets irregular uploads. For each uploaded file, I want to spawn a DAG that is specific to that file.
My first thought was to do this with a FileSensor that monitors the upload folder and, conditional on presence of new files, triggers a task that creates the separate DAGs. Conceptually:
Sensor_DAG (FileSensor -> CreateDAGTask)
|-> File1_DAG (Task1 -> Task2 -> ...)
|-> File2_DAG (Task1 -> Task2 -> ...)
In my initial implementation, CreateDAGTask
was a PythonOperator
that created DAG globals, by placing them in the global namespace (see this SO answer), like so:
from airflow import DAG
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator
from airflow.contrib.sensors.file_sensor import FileSensor
from datetime import datetime, timedelta
from pathlib import Path
UPLOAD_LOCATION = "/opt/files/uploaded"
# Dynamic DAG generation task code, for the Sensor_DAG below
def generate_dags_for_files(location=UPLOAD_LOCATION, **kwargs):
dags = []
for filepath in Path(location).glob('*'):
dag_name = f"process_{filepath.name}"
dag = DAG(dag_name, schedule_interval="@once", default_args={
"depends_on_past": True,
"start_date": datetime(2020, 7, 15),
"retries": 1,
"retry_delay": timedelta(hours=12)
}, catchup=False)
dag_task = DummyOperator(dag=dag, task_id=f"start_{dag_name}")
dags.append(dag)
# Try to place the DAG into globals(), which doesn't work
globals()[dag_name] = dag
return dags
The main DAG then invokes this logic via a PythonOperator
:
# File-sensing DAG
default_args = {
"depends_on_past" : False,
"start_date" : datetime(2020, 7, 16),
"retries" : 1,
"retry_delay" : timedelta(hours=5),
}
with DAG("Sensor_DAG", default_args=default_args,
schedule_interval= "50 * * * *", catchup=False, ) as sensor_dag:
start_task = DummyOperator(task_id="start")
stop_task = DummyOperator(task_id="stop")
sensor_task = FileSensor(task_id="my_file_sensor_task",
poke_interval=60,
filepath=UPLOAD_LOCATION)
process_creator_task = PythonOperator(
task_id="process_creator",
python_callable=generate_dags_for_files,
)
start_task >> sensor_task >> process_creator_task >> stop_task
But that doesn't work, because by the time process_creator_task
runs, the globals have already been parsed by Airflow. New globals after parse time are irrelevant.
Interim solution
Per Airflow dynamic DAG and task Ids, I can achieve what I'm trying to do by omitting the Update: Nevermind -- while this does create a DAG in the dashboard, actual execution runs into the "DAG seems to be missing" issue:FileSensor
task altogether and just letting Airflow generate the per-file task at each scheduler heartbeat, replacing the Sensor_DAG with just executing generate_dags_for_files
:
generate_dags_for_files()
This does mean that I can no longer regulate the frequency of folder polling with the poke_interval
parameter of FileSensor
; instead, Airflow will poll the folder every time it collects DAGs.
Is that the best pattern here?
Other related StackOverflow threads
- Run Airflow DAG for each file and Airflow: Proper way to run DAG for each file: identical use case, but the accepted answer uses two static DAGs, presumably with different parameters.
- Proper way to create dynamic workflows in Airflow - accepted answer dynamically creates tasks, not DAGs, via a complicated XCom setup.