I want to understand the difference in time complexity between these two solutions. The task is not relevant but if you're curious here's the link with the explanation.
This is my first solution. Scores a 100% in correctness but 0% in performance:
def solution(s, p ,q):
dna = dict({'A': 1, 'C': 2, 'G': 3, 'T': 4})
result = []
for i in range(len(q)):
least = 4
for c in set(s[p[i] : q[i] + 1]):
if least > dna[c]: least = dna[c]
result.append(least)
return result
This is the second solution. Scores 100% in both correctness and performance:
def solution(s, p ,q):
result = []
for i in range(len(q)):
if 'A' in s[p[i]:q[i] + 1]: result.append(1)
elif 'C' in s[p[i]:q[i] + 1]: result.append(2)
elif 'G' in s[p[i]:q[i] + 1]: result.append(3)
else: result.append(4)
return list(result)
Now this is how I see it. In both solutions I'm iterating through a range of Q length and on each iteration I'm slicing different portions of a string, with a length between 1 and 100,000.
Here's where I get confused, in my first solution on each iteration, I'm slicing once a portion of the string and create a set to remove all the duplicates. The set can have a length between 1 and 4, so iterating through it must be very quick. What I notice is that I iterate through it only once, on each iteration.
In the second solution on each iteration, I'm slicing three times a portion of the string and iterate through it, in the worst case three times with a length of 100,000.
Then why is the second solution faster? How can the first have a time complexity of O(n*m) and the second O(n+m)?
I thought it's because of the in
and the for
operators, but I tried the same second solution in JavaScript with the indexOf
method and it still gets a 100% in performance. But why? I can understand that if in Python the in
and the for
operators have different implementations and work differently behind the scene, but in JS the indexOf
method is just going to apply a for loop. Then isn't it the same as just doing the for loop directly inside my function? Shouldn't that be a O(n*m) time complexity?