I'm trying to remove outliers from a column in a pandas DataFrame.
Here's what my variable originally looks like (with the obvious outliers):
I then decide to delete anything that has a variation of +/-3 (since I know it shouldn't be possible to vary that much):
This works, and gives me NaN to replace the spikes:
But whenever I try to replace the now missing values by the previous observations, I somehow get some spikes back!
Would anyone know what I'm doing wrong?
Here's the whole code (in a while loop which goes indefinitely):
df = pd.DataFrame({'soc': [38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 127.0, 127.0, 66.48, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 127.0, 55.8, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0, 38.0]})
while (abs(df['soc'].diff()) > 3).any():
df['soc'] = np.where(abs(df['soc'].diff()) > 3, np.nan, df['soc'])
df['soc'].fillna(method='ffill', inplace=True)