1

I have data with same index number for different timeframe as below

           Time CallOI  PutOI   CallLTP PutLTP  
29500   3:30 PM 502725  554775  343.70  85.50   
29500   3:15 PM 568725  629700  357.15  81.70   
29500   2:59 PM 719350  689850  337.85  95.45   
29500   2:45 PM 786975  641575  360.00  108.35  
29500   2:30 PM 823500  626875  336.50  127.80  
29500   2:15 PM 812450  631800  308.55  143.00  
29500   2:00 PM 974700  617750  389.80  120.00  
29500   1:45 PM 1072675 547100  262.55  186.85  
29500   1:30 PM 1272300 469600  206.85  232.00  
29600   3:30 PM 502725  554775  343.70  85.50   
29600   3:15 PM 568725  629700  357.15  81.70   
29600   2:59 PM 719350  689850  337.85  95.45   
29600   2:45 PM 786975  641575  360.00  108.35  
29600   2:30 PM 823500  626875  336.50  127.80  
29600   2:15 PM 812450  631800  308.55  143.00  
29600   2:00 PM 974700  617750  389.80  120.00  
29600   1:45 PM 1072675 547100  262.55  186.85  
29600   1:30 PM 1272300 469600  206.85  232.00  
29700   3:30 PM 502725  554775  343.70  85.50   
29700   3:15 PM 568725  629700  357.15  81.70   
29700   2:59 PM 719350  689850  337.85  95.45   
29700   2:45 PM 786975  641575  360.00  108.35  
29700   2:30 PM 823500  626875  336.50  127.80  
29700   2:15 PM 812450  631800  308.55  143.00  
29700   2:00 PM 974700  617750  389.80  120.00  
29700   1:45 PM 1072675 547100  262.55  186.85  
29700   1:30 PM 1272300 469600  206.85  232.00  

using below code i have made chart :

subfig = make_subplots(specs=[[{"secondary_y": True}]])

# create two independent figures with px.line each containing data from multiple columns
fig = px.line(df,x='Time', y='Call OI')
fig2 = px.line(df,x='Time', y='Call LTP')

fig2.update_traces(yaxis="y2")

subfig.add_traces(fig.data + fig2.data)
subfig.layout.xaxis.title="Time"
subfig.layout.yaxis.title="OI"
subfig.layout.yaxis2.type="log"
subfig.layout.yaxis2.title="Price"
# recoloring is necessary otherwise lines from fig und fig2 would share each color
# e.g. Linear-, Log- = blue; Linear+, Log+ = red... we don't want this
subfig.for_each_trace(lambda t: t.update(line=dict(color=t.marker.color)))
subfig.show()

Chart

I want dropdown menu which selects different index and the chart data changes accordingly. example if i select from drop down 29600 it shows only data for that index number and also is there a way to flip x axis (time) from left to right. Thanks in advance for any solutions

Zac
  • 323
  • 7
  • 14
  • I have tried many things based on [this answer](https://stackoverflow.com/questions/46410738/plotly-how-to-select-graph-source-using-dropdown), but I could not get a solution. I would proceed to ask the question directly to the [plotly community](https://community.plotly.com/). – r-beginners Nov 21 '20 at 03:22
  • @Zac How did my last suggestion work out for you? – vestland Nov 24 '20 at 08:50
  • @vestland I have tried solution but no success, using your full get me this chart [link](https://imgur.com/a/v1uGahg). removing `df = pd.DataFrame(df), df = df.reset_index()` gives me this error `ValueError: cannot insert level_0, already exists` and please check time column AM/PM is included in the column. – Zac Nov 24 '20 at 16:55
  • @Zac I see... Firsy of all, try running the complete code on your end *exactly* as it is in my answer. Does that work? – vestland Nov 24 '20 at 17:13
  • @vestland yes it does. but when using it my dataframe it gives me error. here is the [link](https://drive.google.com/file/d/1sfBvtWdnphdpJcCARe5FFpFcq0Zs7xR2/view?usp=sharing) for sample dataframe format i am using please do check and please use this dataset in your code. Thanks – Zac Nov 24 '20 at 17:17
  • @Zac Ok, I will consider that. But the preferred SO way wirh regards to reproducibilty and lasting value of your question for future readers would be for you to include a proper data sample in your question like [this](https://stackoverflow.com/questions/63163251/pandas-how-to-easily-share-a-sample-dataframe-using-df-to-dict/63163254?r=SearchResults&s=2|0.0000#63163254). If that does not work for you, I will take a look at the linked data when I find the time. – vestland Nov 24 '20 at 18:03
  • @Zac Your initial dataset has `29500, 29600` etc with duplicate numbera as and index. Your attempts using my suggestion on the dataset in the link you have also provided may have failed for several reasons. For one, where is the index? I can't see a column in your linked sheet that corresponds to the `29500, 29600` index in your first data sample. – vestland Nov 29 '20 at 21:01
  • @vestland I am so sorry i have given you raw data. when i am working with this data i set "strike price" column as index which i forgot to mention. – Zac Nov 30 '20 at 06:01
  • @Zac OK, I made another attempl. You're not making it easy with the way you've decided to share your new dataset though. Anyway, I hope you'll find my latest suggetsion useful. – vestland Nov 30 '20 at 09:41
  • @vestland Thank you so much and sorry for being annoying – Zac Dec 01 '20 at 04:20
  • @Zac No problem! Glad it worked out in the end! – vestland Dec 01 '20 at 04:32

1 Answers1

1

Edit 2 - Updated suggestion with linked dataset

In order to use the full dataset provided in the link, just download that content as a csv file, open it and copy the contents, and then run the code below to get the next figure. The data is picked up using dfi = pd.read_clipboard(sep=','). There is really no need to bother with setting 'Strike Price as index. Please note that the dataset has a lot of 0 values, but selecting, for example, 26100 will at least produce a meaningful output:

enter image description here

Complete code for edit 2

import collections
import dash
import pandas as pd

from dash.dependencies import Output, Input
from dash.exceptions import PreventUpdate

from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State, ClientsideFunction
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
from plotly.subplots import make_subplots
import plotly.graph_objects as go

dfi = pd.read_clipboard(sep=',')
df = dfi.copy()

idx = list(df['Strike Price'].unique())

app = JupyterDash()

app.layout = html.Div([
    dcc.Store(id='memory-output'),
    dcc.Dropdown(id='memory-countries', options=[
        {'value': x, 'label': x} for x in idx
    ], multi=False, value=idx[0]), 
        dcc.Dropdown(id='memory-field', options=[
        {'value': 'default', 'label': 'default'},
        {'value': 'reverse', 'label': 'reverse'},
    ], value='default'),
    
    html.Div([
        dcc.Graph(id='memory-graph'),
    ])
])


@app.callback(Output('memory-output', 'data'),
              [Input('memory-countries', 'value')])
def filter_countries(idx_selected):
    if not idx_selected:
        # Return all the rows on initial load/no country selected.
        return(idx_selected)
    return(idx_selected)

@app.callback(Output('memory-graph', 'figure'),
              [Input('memory-output', 'data'),
              Input('memory-field', 'value')])
def on_data_set_graph(data, field):
#     print(data)
#     global dff
    if data is None:
        raise PreventUpdate
    
    # figure setup
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    dff = df[df['Strike Price']==data]
    fig.add_trace(go.Scatter(x=dff.Time, y = dff['Call OI'], name = 'Call'), secondary_y=True)
    fig.add_trace(go.Scatter(x=dff.Time, y = dff['Call LTP'], name = 'Put'), secondary_y=False)
    
    # flip axis
    if field != 'default':
        fig.update_layout(xaxis = dict(autorange='reversed'))
    
    return(fig)

app.run_server(mode='inline', port = 8072, dev_tools_ui=True,
          dev_tools_hot_reload =True, threaded=True, debug=True)

Edit - Updated suggestion with axis flipping

My latest suggestion builds on an example under the section Share data between callbacks from dcc.Store and makes the necessary adjustments to work for your use case. I've also incorporated a functionality to flip your x-axis values using: fig.update_layout(xaxis = dict(autorange='reversed'))

Here's the result:

enter image description here

And here's the complete code:

import collections
import dash
import pandas as pd

from dash.dependencies import Output, Input
from dash.exceptions import PreventUpdate

from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State, ClientsideFunction
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
from plotly.subplots import make_subplots
import plotly.graph_objects as go

df = pd.DataFrame({'Time': {(29500, '3:30'): 'PM',
                              (29500, '3:15'): 'PM',
                              (29500, '2:59'): 'PM',
                              (29500, '2:45'): 'PM',
                              (29500, '2:30'): 'PM',
                              (29500, '2:15'): 'PM',
                              (29500, '2:00'): 'PM',
                              (29500, '1:45'): 'PM',
                              (29500, '1:30'): 'PM',
                              (29600, '3:30'): 'PM',
                              (29600, '3:15'): 'PM',
                              (29600, '2:59'): 'PM',
                              (29600, '2:45'): 'PM',
                              (29600, '2:30'): 'PM',
                              (29600, '2:15'): 'PM',
                              (29600, '2:00'): 'PM',
                              (29600, '1:45'): 'PM',
                              (29600, '1:30'): 'PM',
                              (29700, '3:30'): 'PM',
                              (29700, '3:15'): 'PM',
                              (29700, '2:59'): 'PM',
                              (29700, '2:45'): 'PM',
                              (29700, '2:30'): 'PM',
                              (29700, '2:15'): 'PM',
                              (29700, '2:00'): 'PM',
                              (29700, '1:45'): 'PM',
                              (29700, '1:30'): 'PM'},
                             'CallOI': {(29500, '3:30'): 502725,
                              (29500, '3:15'): 568725,
                              (29500, '2:59'): 719350,
                              (29500, '2:45'): 786975,
                              (29500, '2:30'): 823500,
                              (29500, '2:15'): 812450,
                              (29500, '2:00'): 974700,
                              (29500, '1:45'): 1072675,
                              (29500, '1:30'): 1272300,
                              (29600, '3:30'): 502725,
                              (29600, '3:15'): 568725,
                              (29600, '2:59'): 719350,
                              (29600, '2:45'): 786975,
                              (29600, '2:30'): 823500,
                              (29600, '2:15'): 812450,
                              (29600, '2:00'): 974700,
                              (29600, '1:45'): 1000000,
                              (29600, '1:30'): 1272300,
                              (29700, '3:30'): 502725,
                              (29700, '3:15'): 568725,
                              (29700, '2:59'): 719350,
                              (29700, '2:45'): 786975,
                              (29700, '2:30'): 823500,
                              (29700, '2:15'): 812450,
                              (29700, '2:00'): 974700,
                              (29700, '1:45'): 1172675,
                              (29700, '1:30'): 1272300},
                             'PutOI': {(29500, '3:30'): 554775,
                              (29500, '3:15'): 629700,
                              (29500, '2:59'): 689850,
                              (29500, '2:45'): 641575,
                              (29500, '2:30'): 626875,
                              (29500, '2:15'): 631800,
                              (29500, '2:00'): 617750,
                              (29500, '1:45'): 547100,
                              (29500, '1:30'): 469600,
                              (29600, '3:30'): 554775,
                              (29600, '3:15'): 629700,
                              (29600, '2:59'): 689850,
                              (29600, '2:45'): 641575,
                              (29600, '2:30'): 626875,
                              (29600, '2:15'): 631800,
                              (29600, '2:00'): 617750,
                              (29600, '1:45'): 547100,
                              (29600, '1:30'): 469600,
                              (29700, '3:30'): 554775,
                              (29700, '3:15'): 629700,
                              (29700, '2:59'): 689850,
                              (29700, '2:45'): 641575,
                              (29700, '2:30'): 626875,
                              (29700, '2:15'): 631800,
                              (29700, '2:00'): 617750,
                              (29700, '1:45'): 547100,
                              (29700, '1:30'): 469600},
                             'CallLTP': {(29500, '3:30'): 343.7,
                              (29500, '3:15'): 357.15,
                              (29500, '2:59'): 337.85,
                              (29500, '2:45'): 360.0,
                              (29500, '2:30'): 336.5,
                              (29500, '2:15'): 308.55,
                              (29500, '2:00'): 389.8,
                              (29500, '1:45'): 262.55,
                              (29500, '1:30'): 206.85,
                              (29600, '3:30'): 343.7,
                              (29600, '3:15'): 357.15,
                              (29600, '2:59'): 337.85,
                              (29600, '2:45'): 360.0,
                              (29600, '2:30'): 336.5,
                              (29600, '2:15'): 308.55,
                              (29600, '2:00'): 389.8,
                              (29600, '1:45'): 262.55,
                              (29600, '1:30'): 206.85,
                              (29700, '3:30'): 343.7,
                              (29700, '3:15'): 357.15,
                              (29700, '2:59'): 337.85,
                              (29700, '2:45'): 360.0,
                              (29700, '2:30'): 336.5,
                              (29700, '2:15'): 308.55,
                              (29700, '2:00'): 389.8,
                              (29700, '1:45'): 262.55,
                              (29700, '1:30'): 206.85},
                             'PutLTP': {(29500, '3:30'): 85.5,
                              (29500, '3:15'): 81.7,
                              (29500, '2:59'): 95.45,
                              (29500, '2:45'): 108.35,
                              (29500, '2:30'): 127.8,
                              (29500, '2:15'): 143.0,
                              (29500, '2:00'): 120.0,
                              (29500, '1:45'): 186.85,
                              (29500, '1:30'): 232.0,
                              (29600, '3:30'): 85.5,
                              (29600, '3:15'): 81.7,
                              (29600, '2:59'): 95.45,
                              (29600, '2:45'): 108.35,
                              (29600, '2:30'): 127.8,
                              (29600, '2:15'): 143.0,
                              (29600, '2:00'): 120.0,
                              (29600, '1:45'): 186.85,
                              (29600, '1:30'): 232.0,
                              (29700, '3:30'): 85.5,
                              (29700, '3:15'): 81.7,
                              (29700, '2:59'): 95.45,
                              (29700, '2:45'): 108.35,
                              (29700, '2:30'): 127.8,
                              (29700, '2:15'): 143.0,
                              (29700, '2:00'): 120.0,
                              (29700, '1:45'): 186.85,
                              (29700, '1:30'): 232.0}})

df = df.reset_index()
idx = list(df['level_0'].unique())

app = JupyterDash()

app.layout = html.Div([
    dcc.Store(id='memory-output'),
    dcc.Dropdown(id='memory-countries', options=[
        {'value': x, 'label': x} for x in idx
    ], multi=False, value=idx[0]), 
        dcc.Dropdown(id='memory-field', options=[
        {'value': 'default', 'label': 'default'},
        {'value': 'reverse', 'label': 'reverse'},
    ], value='default'),
    
    html.Div([
        dcc.Graph(id='memory-graph'),
    ])
])


@app.callback(Output('memory-output', 'data'),
              [Input('memory-countries', 'value')])
def filter_countries(idx_selected):
    if not idx_selected:
        # Return all the rows on initial load/no country selected.
        return(idx_selected)
    return(idx_selected)

@app.callback(Output('memory-graph', 'figure'),
              [Input('memory-output', 'data'),
              Input('memory-field', 'value')])
def on_data_set_graph(data, field):
#     print(data)
    if data is None:
        raise PreventUpdate
    
    # figure setup
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    dff = df[df['level_0']==data]
    fig.add_trace(go.Scatter(x=dff.level_1, y = dff.CallOI, name = 'Call'), secondary_y=True)
    fig.add_trace(go.Scatter(x=dff.level_1, y = dff.PutOI, name = 'Put'), secondary_y=False)
    
    # flip axis
    if field != 'default':
        fig.update_layout(xaxis = dict(autorange='reversed'))
    
    return(fig)

app.run_server(mode='inline', port = 8072, dev_tools_ui=True,
          dev_tools_hot_reload =True, threaded=True, debug=True)

Suggestion 1


You haven't specified how you're using your figures. But assuming it's in JupyterLab, I would higlhy reccommend using JupyterDash. I find that much more felxible than incorporating dropdown features directly in the figure as r-beginners pointed to in the link in the comments.

The code snippet below will let you select which index to show data from in the followin app which is set to produce the figure 'inline' which means in the notebook itself. If you're interested in using an approach like this, I can see if I can implement a button to flip the x-axis as well.

App:

enter image description here

Complete code

import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
from plotly.subplots import make_subplots
from dash.dependencies import Input, Output, State

# data
df = pd.DataFrame({'Time': {(29500, '3:30'): 'PM',
                              (29500, '3:15'): 'PM',
                              (29500, '2:59'): 'PM',
                              (29500, '2:45'): 'PM',
                              (29500, '2:30'): 'PM',
                              (29500, '2:15'): 'PM',
                              (29500, '2:00'): 'PM',
                              (29500, '1:45'): 'PM',
                              (29500, '1:30'): 'PM',
                              (29600, '3:30'): 'PM',
                              (29600, '3:15'): 'PM',
                              (29600, '2:59'): 'PM',
                              (29600, '2:45'): 'PM',
                              (29600, '2:30'): 'PM',
                              (29600, '2:15'): 'PM',
                              (29600, '2:00'): 'PM',
                              (29600, '1:45'): 'PM',
                              (29600, '1:30'): 'PM',
                              (29700, '3:30'): 'PM',
                              (29700, '3:15'): 'PM',
                              (29700, '2:59'): 'PM',
                              (29700, '2:45'): 'PM',
                              (29700, '2:30'): 'PM',
                              (29700, '2:15'): 'PM',
                              (29700, '2:00'): 'PM',
                              (29700, '1:45'): 'PM',
                              (29700, '1:30'): 'PM'},
                             'CallOI': {(29500, '3:30'): 502725,
                              (29500, '3:15'): 568725,
                              (29500, '2:59'): 719350,
                              (29500, '2:45'): 786975,
                              (29500, '2:30'): 823500,
                              (29500, '2:15'): 812450,
                              (29500, '2:00'): 974700,
                              (29500, '1:45'): 1072675,
                              (29500, '1:30'): 1272300,
                              (29600, '3:30'): 502725,
                              (29600, '3:15'): 568725,
                              (29600, '2:59'): 719350,
                              (29600, '2:45'): 786975,
                              (29600, '2:30'): 823500,
                              (29600, '2:15'): 812450,
                              (29600, '2:00'): 974700,
                              (29600, '1:45'): 1000000,
                              (29600, '1:30'): 1272300,
                              (29700, '3:30'): 502725,
                              (29700, '3:15'): 568725,
                              (29700, '2:59'): 719350,
                              (29700, '2:45'): 786975,
                              (29700, '2:30'): 823500,
                              (29700, '2:15'): 812450,
                              (29700, '2:00'): 974700,
                              (29700, '1:45'): 1172675,
                              (29700, '1:30'): 1272300},
                             'PutOI': {(29500, '3:30'): 554775,
                              (29500, '3:15'): 629700,
                              (29500, '2:59'): 689850,
                              (29500, '2:45'): 641575,
                              (29500, '2:30'): 626875,
                              (29500, '2:15'): 631800,
                              (29500, '2:00'): 617750,
                              (29500, '1:45'): 547100,
                              (29500, '1:30'): 469600,
                              (29600, '3:30'): 554775,
                              (29600, '3:15'): 629700,
                              (29600, '2:59'): 689850,
                              (29600, '2:45'): 641575,
                              (29600, '2:30'): 626875,
                              (29600, '2:15'): 631800,
                              (29600, '2:00'): 617750,
                              (29600, '1:45'): 547100,
                              (29600, '1:30'): 469600,
                              (29700, '3:30'): 554775,
                              (29700, '3:15'): 629700,
                              (29700, '2:59'): 689850,
                              (29700, '2:45'): 641575,
                              (29700, '2:30'): 626875,
                              (29700, '2:15'): 631800,
                              (29700, '2:00'): 617750,
                              (29700, '1:45'): 547100,
                              (29700, '1:30'): 469600},
                             'CallLTP': {(29500, '3:30'): 343.7,
                              (29500, '3:15'): 357.15,
                              (29500, '2:59'): 337.85,
                              (29500, '2:45'): 360.0,
                              (29500, '2:30'): 336.5,
                              (29500, '2:15'): 308.55,
                              (29500, '2:00'): 389.8,
                              (29500, '1:45'): 262.55,
                              (29500, '1:30'): 206.85,
                              (29600, '3:30'): 343.7,
                              (29600, '3:15'): 357.15,
                              (29600, '2:59'): 337.85,
                              (29600, '2:45'): 360.0,
                              (29600, '2:30'): 336.5,
                              (29600, '2:15'): 308.55,
                              (29600, '2:00'): 389.8,
                              (29600, '1:45'): 262.55,
                              (29600, '1:30'): 206.85,
                              (29700, '3:30'): 343.7,
                              (29700, '3:15'): 357.15,
                              (29700, '2:59'): 337.85,
                              (29700, '2:45'): 360.0,
                              (29700, '2:30'): 336.5,
                              (29700, '2:15'): 308.55,
                              (29700, '2:00'): 389.8,
                              (29700, '1:45'): 262.55,
                              (29700, '1:30'): 206.85},
                             'PutLTP': {(29500, '3:30'): 85.5,
                              (29500, '3:15'): 81.7,
                              (29500, '2:59'): 95.45,
                              (29500, '2:45'): 108.35,
                              (29500, '2:30'): 127.8,
                              (29500, '2:15'): 143.0,
                              (29500, '2:00'): 120.0,
                              (29500, '1:45'): 186.85,
                              (29500, '1:30'): 232.0,
                              (29600, '3:30'): 85.5,
                              (29600, '3:15'): 81.7,
                              (29600, '2:59'): 95.45,
                              (29600, '2:45'): 108.35,
                              (29600, '2:30'): 127.8,
                              (29600, '2:15'): 143.0,
                              (29600, '2:00'): 120.0,
                              (29600, '1:45'): 186.85,
                              (29600, '1:30'): 232.0,
                              (29700, '3:30'): 85.5,
                              (29700, '3:15'): 81.7,
                              (29700, '2:59'): 95.45,
                              (29700, '2:45'): 108.35,
                              (29700, '2:30'): 127.8,
                              (29700, '2:15'): 143.0,
                              (29700, '2:00'): 120.0,
                              (29700, '1:45'): 186.85,
                              (29700, '1:30'): 232.0}})

df = df.reset_index()

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = JupyterDash(__name__, external_stylesheets=external_stylesheets)

# options for dropdown
criteria = list(df['level_0'].unique())
options = [{'label': i, 'value': i} for i in criteria]
options.append

# app layout
app.layout = html.Div([
                    html.Div([
                        html.Div([
                                  dcc.Dropdown(id='linedropdown',
                                               options=options,                    
                                               value=options[0]['value'],),
                                 ],
                                ),
                                ],className='row'),

                    html.Div([
                        html.Div([
                                  dcc.Graph(id='linechart'),
                                 ],
                                ),
                             ],
                            ),
])

@app.callback(
    [Output('linechart', 'figure')],
    [Input('linedropdown', 'value')]
)

def update_graph(linedropdown):

    # selection using linedropdown
    dff = df[df['level_0']==linedropdown]

    # Create figure with secondary y-axis
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    # Add trace 1
    fig.add_trace(
        go.Scatter(x=dff['level_1'], y=dff['CallOI'], name="Call OI"),
        secondary_y=True,
    )

    # Add trace 2
    fig.add_trace(
        go.Scatter(x=dff['level_1'], y=dff['CallLTP'], name="Call LTP"),
        secondary_y=False,
    )
    fig.update_layout(title = 'Index: ' + str(linedropdown))
    
    return ([fig])

# Run app and display result inline in the notebook
app.run_server(mode='inline', port = 8040, dev_tools_ui=True, debug=True,
              dev_tools_hot_reload =True, threaded=True)
vestland
  • 55,229
  • 37
  • 187
  • 305