So I've implemented Frustum Culling in my game engine and I'm experiencing a strange bug. I am rendering a building that is segmented into chunks and I'm only rendering the chunks which are in the frustum. My camera starts at around (-.033, 11.65, 2.2) and everything looks fine. I start moving around and there is no flickering. When I set a breakpoint in the frustum culling code I can see that it is indeed culling some of the meshes. Everything seems great. Then when I reach the center of the building, around (3.9, 4.17, 2.23) meshes start to disappear that are in view. The same is true on the other side as well. I can't figure out why this bug could exist.
I implement frustum culling by using the extraction method listed here Extracting View Frustum Planes (Gribb & Hartmann method). I had to use glm::inverse() rather than transpose as it suggested and I think the matrix math was given for row-major matrices so I flipped that. All in all my frustum plane calculation looks like
std::vector<Mesh*> render_meshes;
auto comboMatrix = proj * glm::inverse(view * model);
glm::vec4 p_planes[6];
p_planes[0] = comboMatrix[3] + comboMatrix[0]; //left
p_planes[1] = comboMatrix[3] - comboMatrix[0]; //right
p_planes[2] = comboMatrix[3] + comboMatrix[1]; //bottom
p_planes[3] = comboMatrix[3] - comboMatrix[1]; //top
p_planes[4] = comboMatrix[3] + comboMatrix[2]; //near
p_planes[5] = comboMatrix[3] - comboMatrix[2]; //far
for (int i = 0; i < 6; i++){
p_planes[i] = glm::normalize(p_planes[i]);
}
for (auto mesh : meshes) {
if (!frustum_cull(mesh, p_planes)) {
render_meshes.emplace_back(mesh);
}
}
I then decide to cull each mesh based on its bounding box (as calculated by ASSIMP with the aiProcess_GenBoundingBoxes flag) as follows (returning true means culled)
glm::vec3 vmin, vmax;
for (int i = 0; i < 6; i++) {
// X axis
if (p_planes[i].x > 0) {
vmin.x = m->getBBoxMin().x;
vmax.x = m->getBBoxMax().x;
}
else {
vmin.x = m->getBBoxMax().x;
vmax.x = m->getBBoxMin().x;
}
// Y axis
if (p_planes[i].y > 0) {
vmin.y = m->getBBoxMin().y;
vmax.y = m->getBBoxMax().y;
}
else {
vmin.y = m->getBBoxMax().y;
vmax.y = m->getBBoxMin().y;
}
// Z axis
if (p_planes[i].z > 0) {
vmin.z = m->getBBoxMin().z;
vmax.z = m->getBBoxMax().z;
}
else {
vmin.z = m->getBBoxMax().z;
vmax.z = m->getBBoxMin().z;
}
if (glm::dot(glm::vec3(p_planes[i]), vmin) + p_planes[i][3] > 0)
return true;
}
return false;
Any guidance?
Update 1: Normalizing the full vec4 representing the plane is incorrect as only the vec3 represents the normal of the plane. Further, normalization is not necessary for this instance as we only care about the sign of the distance (not the magnitude).
It is also important to note that I should be using the rows of the matrix not the columns. I am achieving this by replacing
p_planes[0] = comboMatrix[3] + comboMatrix[0];
with
p_planes[0] = glm::row(comboMatrix, 3) + glm::row(comboMatrix, 0);
in all instances.