Consider a data frame as shown here.
import pandas as pd
data= [
{'col1':'101', 'col2': '101', 'col3':'1321'},
{'col1':'99', 'col2': '99', 'col3':'101'},
{'col1':'21', 'col2': '23', 'col3':'99'},
{'col1':'47', 'col2': '67', 'col3':'47'},
{'col1':'1321', 'col2': '47', 'col3':'23'}
]
df = pd.DataFrame(data)
How can I calculate Jaccard similarity between each column and then plot it on a heatmap?
Doing something like this does not seem right.
df111 = df.to_numpy()
res = 1 - pdist(df111, 'jaccard')