I am trying to loop over my dataframe and looking for additional 3 rows for each element in df.con
which is only looping over 2nd elementUS
and missing UK
.
Please find the attached code.
import pandas as pd
d = { 'year': [2019,2019,2019,2020,2020,2020],
'age group': ['(0-14)','(14-50)','(50+)','(0-14)','(14-50)','(50+)'],
'con': ['UK','UK','UK','US','US','US'],
'population': [10,20,300,400,1000,2000]}
df = pd.DataFrame(data=d)
df2 = df.copy()
df
year age group con population
0 2019 (0-14) UK 10
1 2019 (14-50) UK 20
2 2019 (50+) UK 300
3 2020 (0-14) US 400
4 2020 (14-50) US 1000
5 2020 (50+) US 2000
n_df_2 = df.copy()
con_list = [x for x in df.con]
year_list = [x for x in df.year]
age_list = [x for x in df['age group']]
new_list = ['young vs child','old vs young', 'unemployed vs working']
for country in df.con:
bev_child = n_df_2[(n_df_2['con'].str.contains(country)) & (n_df_2['age group'].str.contains(age_list[0]))]
bev_work = n_df_2[(n_df_2['con'].str.contains(country)) & (n_df_2['age group'].str.contains(age_list[1]))]
bev_old = n_df_2[(n_df_2['con'].str.contains(country)) & (n_df_2['age group'].str.contains(age_list[2]))]
bev_child.loc[:,'population'] = bev_work.loc[:,'population'].max() / bev_child.loc[:,'population'].max()
bev_child.loc[:,'con'] = country +'-'+new_list[0]
bev_child.loc[:,'age group'] = new_list[0]
s = n_df_2.append(bev_child, ignore_index=True)
bev_child.loc[:,'population'] = bev_child.loc[:,'population'].max() + bev_old.loc[:,'population'].max()/ bev_work.loc[:,'population'].max()
bev_child.loc[:,'con'] = country +'-'+ new_list[2]
bev_child.loc[:,'age group'] = new_list[2]
s = s.append(bev_child, ignore_index=True)
bev_child.loc[:,'population'] = bev_old.loc[:,'population'].max() / bev_work.loc[:,'population'].max()
bev_child.loc[:,'con'] = country +'-'+ new_list[1]
bev_child.loc[:,'age group'] = new_list[1]
s = s.append(bev_child, ignore_index=True)
s
output missing UK rows...
year age group con population
0 2019 (0-14) UK 10.0
1 2019 (14-50) UK 20.0
2 2019 (50+) UK 300.0
3 2020 (0-14) US 400.0
4 2020 (14-50) US 1000.0
5 2020 (50+) US 2000.0
6 2020 young vs child US-young vs child 2.5
7 2020 unemployed vs working US-unemployed vs working 4.5
8 2020 old vs young US-old vs young 2.0