I am trying to use JAX on another SO question to evaluate JAX applicability and performance on the code (There are useful information on that about what the code does). For this purpose, I have modified the code by jax.numpy
(jnp
) equivalent methods (Substituting NumPy related codes with their equivalent jnp
codes were not as easy as I thought due to my little experience by JAX, and may be it could be written better). Finally, I checked the results with the ex-code (optimized algorithm) and the results were the same, but it takes 7.5 seconds by JAX, which took 0.10 seconds by the ex-one for a sample case (using Colab). I think this long runtime may be related to for
loop in the code, which might be substituted by JAX related modules e.g. fori-loop
or vectorization
and …; but I don’t know what changes, and how, must be done to make this code satisfying in terms of performance and speed (using JAX).
import numpy as np
from scipy.spatial import cKDTree, distance
import jax
from jax import numpy as jnp
jax.config.update("jax_enable_x64", True)
# ---------------------------- input data ----------------------------
""" For testing by prepared files:
radii = np.load('a.npy')
poss = np.load('b.npy')
"""
rnd = np.random.RandomState(70)
data_volume = 1000
radii = rnd.uniform(0.0005, 0.122, data_volume)
dia_max = 2 * radii.max()
x = rnd.uniform(-1.02, 1.02, (data_volume, 1))
y = rnd.uniform(-3.52, 3.52, (data_volume, 1))
z = rnd.uniform(-1.02, -0.575, (data_volume, 1))
poss = np.hstack((x, y, z))
# --------------------------------------------------------------------
# @jax.jit
def ends_gap(poss, dia_max):
particle_corsp_overlaps = jnp.array([], dtype=np.float64)
# kdtree = cKDTree(poss) # Using SciPy
for particle_idx in range(len(poss)):
cur_point = poss[particle_idx]
# nears_i_ind = jnp.array(kdtree.query_ball_point(cur_point, r=dia_max, return_sorted=True), dtype=np.int64) # Using SciPy
# Using NumPy
unshared_idx = jnp.delete(jnp.arange(len(poss)), particle_idx)
poss_without = poss[unshared_idx]
dist_max = radii[particle_idx] + radii.max()
lx_limit_idx = poss_without[:, 0] <= poss[particle_idx][0] + dist_max
ux_limit_idx = poss_without[:, 0] >= poss[particle_idx][0] - dist_max
ly_limit_idx = poss_without[:, 1] <= poss[particle_idx][1] + dist_max
uy_limit_idx = poss_without[:, 1] >= poss[particle_idx][1] - dist_max
lz_limit_idx = poss_without[:, 2] <= poss[particle_idx][2] + dist_max
uz_limit_idx = poss_without[:, 2] >= poss[particle_idx][2] - dist_max
nears_i_ind = jnp.where(lx_limit_idx & ux_limit_idx & ly_limit_idx & uy_limit_idx & lz_limit_idx & uz_limit_idx)[0]
# assert len(nears_i_ind) > 0
# if len(nears_i_ind) <= 1:
# continue
nears_i_ind = nears_i_ind[nears_i_ind != particle_idx]
# dist_i = distance.cdist(poss[tuple(nears_i_ind[None, :])], cur_point[None, :]).squeeze() # Using SciPy
dist_i = jnp.linalg.norm(poss[tuple(nears_i_ind[None, :])] - cur_point[None, :], axis=-1) # Using NumPy
contact_check = dist_i - (radii[tuple(nears_i_ind[None, :])] + radii[particle_idx])
connected = contact_check[contact_check <= 0]
particle_corsp_overlaps = jnp.concatenate((particle_corsp_overlaps, connected))
contacts_ind = jnp.where(contact_check <= 0)[0]
contacts_sec_ind = jnp.array(nears_i_ind)[contacts_ind]
sphere_olps_ind = jnp.sort(contacts_sec_ind)
ends_ind_mod_temp = jnp.array([jnp.repeat(particle_idx, len(sphere_olps_ind)), sphere_olps_ind], dtype=np.int64).T
if particle_idx > 0: # ---> these 4-lines perhaps be better to be substituted by just one-line list appending as "ends_ind.append(ends_ind_mod_temp)"
ends_ind = jnp.concatenate((ends_ind, ends_ind_mod_temp))
else:
ends_ind = jnp.array(ends_ind_mod_temp, dtype=np.int64)
ends_ind_org = ends_ind
ends_ind, ends_ind_idx = jnp.unique(jnp.sort(ends_ind_org), axis=0, return_index=True)
gap = jnp.array(particle_corsp_overlaps)[ends_ind_idx]
return gap, ends_ind, ends_ind_idx, ends_ind_org
I have tried to use @jax.jit
on this code, but it shows errors: TracerArrayConversionError
or ConcretizationTypeError
on COLAB TPU:
Using SciPy:
TracerArrayConversionError: The numpy.ndarray conversion method array() was called on the JAX Tracer object Traced<ShapedArray(float64[1000,3])>with<DynamicJaxprTrace(level=0/1)> While tracing the function ends_gap at :1 for jit, this concrete value was not available in Python because it depends on the value of the argument 'poss'. See https://jax.readthedocs.io/en/latest/errors.html#jax.errors.TracerArrayConversionError
Using NumPy:
ConcretizationTypeError: Abstract tracer value encountered where concrete value is expected: Traced<ShapedArray(int64[])>with<DynamicJaxprTrace(level=0/1)> The size argument of jnp.nonzero must be statically specified to use jnp.nonzero within JAX transformations. While tracing the function ends_gap at :1 for jit, this concrete value was not available in Python because it depends on the values of the arguments 'poss' and 'dia_max'.
See https://jax.readthedocs.io/en/latest/errors.html#jax.errors.ConcretizationTypeError
I would be appreciated for any help to speed up this code by passing these problems using JAX (and jax.jit
if possible). How to utilize JAX to have the best performances on both CPU and GPU or TPU?
Prepared sample test data:
a.npy = Radii data
b.npy = Poss data
Updates
The main aim of this issue is how to modify the code for gaining the best performance of that using JAX library
I have commented the SciPy related lines on the code based on jakevdp answer and uncomment the equivalent NumPy related sections.
For getting better answer, I'm numbering some important subjects:
- Is scikit-learn
BallTree
related methods compatible with JAX?? This methods can be a good alternative for SciPycKDTree
in terms of memory usage (for probable vectorizations). - How to best handle the loop section in the code, using
fori_loop
or by putting code lines of the loop inside a function and then vectorizing, jitting or …??
- I had problem preparing the code for using
fori_loop
. What has been done for usingfori_loop
can be understood from the following code line, whereparticle_corsp_overlaps
was the input of the defined function (this function just contains the loop section). It will be useful to show how to do that if usingfori_loop
is recommended.
particle_corsp_overlaps, ends_ind = jax.lax.fori_loop(0, len(poss), jax_loop, particle_corsp_overlaps)
- I put the NumPy section in a function for jitting by
@jax.jit
to check its capability to improve performance (I don't know how much it can help). It got an error ConcretizationTypeError (--> Shape depends on Traced Value) relating toposs
. So, I tried to use@partial(jax.jit, static_argnums=0)
decorator by importingpartial
fromfunctools
, but now I am getting the following error; how to solve it if this way is recommended e.g. for:
@partial(jax.jit, static_argnums=0)
def ends_gap(poss):
for particle_idx in range(len(poss)):
cur_point = poss[particle_idx]
unshared_idx = jnp.delete(jnp.arange(len(poss)), particle_idx)
poss_without = poss[unshared_idx]
dist_max = radii[particle_idx] + radii.max()
lx_limit_idx = poss_without[:, 0] <= poss[particle_idx][0] + dist_max
ux_limit_idx = poss_without[:, 0] >= poss[particle_idx][0] - dist_max
ly_limit_idx = poss_without[:, 1] <= poss[particle_idx][1] + dist_max
uy_limit_idx = poss_without[:, 1] >= poss[particle_idx][1] - dist_max
lz_limit_idx = poss_without[:, 2] <= poss[particle_idx][2] + dist_max
uz_limit_idx = poss_without[:, 2] >= poss[particle_idx][2] - dist_max
nears_i_ind = jnp.where(lx_limit_idx & ux_limit_idx & ly_limit_idx & uy_limit_idx & lz_limit_idx & uz_limit_idx)[0]
nears_i_ind = nears_i_ind[nears_i_ind != particle_idx]
dist_i = jnp.linalg.norm(poss[tuple(nears_i_ind[None, :])] - cur_point[None, :], axis=-1)
ValueError: Non-hashable static arguments are not supported. An error occured during a call to 'nearest_neighbors_jax' while trying to hash an object of type <class 'jaxlib.xla_extension.DeviceArray'>, [[ 8.42519143e-01 1.37693422e+00 -7.97775882e-01] [-3.31436445e-01 -1.67346250e+00 -8.61069684e-01] [-1.57500126e-01 -1.17502591e+00 -7.48879998e-01]]. The error was: TypeError: unhashable type: 'DeviceArray'
I did not put the total loop body into the function due to stuck in this short defined function. Creating a function with all the loop body, which can be jitted or …, is of interest if possible.
- Can 4-lines
ends_ind
relatedif-else
statement be written in just one line using jax methods to avoid probable problems withif
during jitting or …?