Lately the more I read about memory order in C++, the more confusing it gets. Hope you can help me clarify this (for purely theoretic purposes). Suppose I have the following code:
std::atomic<int> val = { 0 };
std::atomic<bool> f1 = { false };
std::atomic<bool> f2 = { false };
void thread_1() {
f1.store(true, std::memory_order_relaxed);
int v = 0;
while (!val.compare_exchange_weak(v, v | 1,
std::memory_order_release));
}
void thread_2() {
f2.store(true, std::memory_order_relaxed);
int v = 0;
while (!val.compare_exchange_weak(v, v | 2,
std::memory_order_release));
}
void thread_3() {
auto v = val.load(std::memory_order_acquire);
if (v & 1) assert(f1.load(std::memory_order_relaxed));
if (v & 2) assert(f2.load(std::memory_order_relaxed));
}
The question is: can any of the assertions be false? On one hand, cppreference claims, std::memory_order_release
forbids the reordering of both stores after exchanges in threads 1-2 and std::memory_order_acquire
in thread 3 forbids both reads to be reordered before the first load. Thus, if thread 3 saw the first or the second bit set that means that the store to the corresponding boolean already happened and it has to be true.
On the other hand, thread 3 synchronizes with whoever released the value it has acquired from val
. Can it happen so (in theory if not in practice) that thread 3 "acquired" the exchange "1 -> 3" by thread 2 (and therefore f2 load returns true), but not the "0 -> 1" by thread 1 (thus the first assertion fires)? This possibility makes no sense to me considering the "reordering" understanding, yet I can't find any confirmation that this cannot happen anywhere.