I want to read a large file (4GB) as a Pandas dataframe. Since using Dask directly still consumes maximum CPU, I read the file as a pandas dataframe, then use dask_cudf
, and then convert back to a pandas dataframe.
However, my code is still using maximum CPU on Kaggle. GPU accelerator is switched on.
import pandas as pd
from dask import dataframe as dd
from dask_cuda import LocalCUDACluster
from dask.distributed import Client
cluster = LocalCUDACluster()
client = Client(cluster)
df = pd.read_csv("../input/subtype-nt/meth_subtype_normal_tumor.csv", sep="\t", index_col=0)
ddf = dask_cudf.from_cudf(df, npartitions=2)
meth_sub_nt = ddf.infer_objects()