I am trying to do a correlation heatmap for my 13 features. The thing is no matter what figure size I try or choose I don't get the 3rd feature (Part's Volume (cm^3)) for some reason. I get all other features though. Any suggestions? THANK YOU FOR YOUR HELP.
The code that I am using:
data_set = pd.read_excel("Correlation Analysis NEW.xlsx")
pd.set_option('max_columns', 35)
pd.set_option('max_rows', 300)
data_set.head(300)
Part's Z-Height (mm) Part's Weight (N) Part's Volume (cm^3) Part's Solid Volume (cm^3) Part's Surface Area (cm^2) Material's Density (g/cm^3) Layer Height (mm) Infill Density (%) Nozzle/Printing Temperature (C) Platform Temperature (C) Printing/Scanning Speed (mm/s) Part's Orientation (Support's height) (mm) Part's Orientation (Support's volume) (cm^3)
0 53.5773 0.225630 39.79 18.548387 155.57 1.24 0.1 20 210 60 50 35.310 4.919355
1 53.5773 0.225630 39.79 18.548387 155.57 1.24 0.2 20 210 60 50 35.310 4.516129
2 53.5773 0.234459 39.79 19.274194 155.57 1.24 0.3 20 210 60 50 20.201 3.870968
3 53.5773 0.233478 39.79 19.193548 155.57 1.24 0.4 20 210 60 50 20.201 3.870968
4 53.5773 0.235440 39.79 19.354839 155.57 1.24 0.6 20 210 60 50 35.310 3.951613
5 53.5773 0.225630 39.79 18.548387 155.57 1.24 0.1 20 210 60 40 35.310 4.919355
6 53.5773 0.290376 39.79 23.870968 155.57 1.24 0.1 40 210 60 50 35.310 4.919355
7 37.8376 0.224649 39.79 18.467742 155.57 1.24 0.1 20 210 60 50 18.381 3.790323
8 37.8376 0.224649 39.79 18.467742 155.57 1.24 0.2 20 210 60 50 18.381 3.709677
9 37.8376 0.235440 39.79 19.354839 155.57 1.24 0.3 20 210 60 50 18.381 3.629032
10 37.8376 0.235440 39.79 19.354839 155.57 1.24 0.4 20 210 60 50 18.381 3.548387
11 37.8376 0.234459 39.79 19.274194 155.57 1.24 0.6 20 210 60 50 18.381 3.467742
12 37.8376 0.224649 39.79 18.467742 155.57 1.24 0.1 20 210 60 40 18.381 3.790323
13 37.8376 0.289395 39.79 23.790323 155.57 1.24 0.1 40 210 60 50 18.381 3.790323
14 30.0253 0.224649 31.43 18.467742 169.94 1.24 0.1 20 210 60 50 12.484 6.532258
15 30.0253 0.224649 31.43 18.467742 169.94 1.24 0.1 20 210 60 40 12.484 6.532258
16 30.0253 0.224649 31.43 18.467742 169.94 1.24 0.1 20 210 60 45 12.484 6.532258
17 30.0253 0.224649 31.43 18.467742 169.94 1.24 0.1 20 210 60 53 12.484 6.532258
18 30.0253 0.224649 31.43 18.467742 169.94 1.24 0.1 20 210 60 55 12.484 6.532258
19 30.0253 0.386514 31.43 31.774194 169.94 1.24 0.1 100 210 60 50 12.484 6.532258
20 81.6440 0.215820 31.43 17.741935 169.94 1.24 0.1 20 210 60 50 63.289 8.870968
21 81.6440 0.215820 31.43 17.741935 169.94 1.24 0.1 20 210 60 40 63.289 8.870968
22 81.6440 0.215820 31.43 17.741935 169.94 1.24 0.1 20 210 60 45 63.289 8.870968
23 81.6440 0.215820 31.43 17.741935 169.94 1.24 0.1 20 210 60 53 63.289 8.870968
data_set.columns=["Part's Z-Height (mm)","Part's Weight (N)","Part's Volume (cm^3)","Part's Solid Volume (cm^3)","Part's Surface Area (cm^2)","Material's Density (g/cm^3)","Layer Height (mm)","Infill Density (%)","Nozzle/Printing Temperature (C)","Platform Temperature (C)","Printing/Scanning Speed (mm/s)","Part's Orientation (Support's height) (mm)","Part's Orientation (Support's volume) (cm^3)"]
#
# Correlation between different variables
#
corr = data_set.corr()
#
# Set up the matplotlib plot configuration
#
f, ax = plt.subplots(figsize=(12, 10))
#
# Configure a custom diverging colormap
#
cmap = sns.diverging_palette(230, 20, as_cmap=True)
#
# Draw the heatmap
#
sns.heatmap(corr, annot=True, cmap=cmap)
ax.set_title('Correlation Heat Map', weight='bold', fontsize = 10)
plt.show()