I've been looking through samples but am unable to understand how to integrate the precision, recall and f1 metrics for my model. My code is as follows:
for epoch in range(num_epochs):
#Calculate Accuracy (stack tutorial no n_total)
n_correct = 0
n_total = 0
for i, (words, labels) in enumerate(train_loader):
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
# Forward pass
outputs = model(words)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
#feedforward tutorial solution
_, predicted = torch.max(outputs, 1)
n_correct += (predicted == labels).sum().item()
n_total += labels.shape[0]
accuracy = 100 * n_correct/n_total
#Push to matplotlib
train_losses.append(loss.item())
train_epochs.append(epoch)
train_acc.append(accuracy)
#Loss and Accuracy
if (epoch+1) % 10 == 0:
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.2f}, Acc: {accuracy:.2f}')