This is a perfect job for a read/write lock.
In C++ this can be implemented by having a shared_mutex
, then using a unique_lock
to lock it for writing, and a shared_lock
to lock it for reading. See this post for a example code.
The end effect is that readers will never block on eachother, reads can all happen at the same time, but if the writer has the lock, everything will block to let the writing operation proceed.
If the writing takes a long time, so long that the once-per-day delay is unacceptable, then you can have the writer create and populate a new copy of the data without taking a lock, then take the write end of the lock and swap the data:
Readers:
- Lock mutex with a
shared_lock
- Do stuff
- Unlock
- Repeat
Writer:
- Create new copy of data
- Lock mutex with a
unique_lock
- Swap data quickly
- Unlock
- Repeat tomorrow
A shared_lock
on a shared_mutex
will be fast. You could use a double check locking strategy but I would not do that until you do performance testing and also probably take a look at the source for shared_lock
, because I suspect it does something similar already, and a double-check on the read end might just add overhead unnecessarily. Also I don't have enough coffee in me yet to work out double check locking in a read/write lock scenario.
There is a threading construct called a spin lock as well, but it's really just an encapsulation of a double-checked lock that repeats the "check" until it clears. It's a good construct but again you'll want performance analyses and a look at the shared_lock
+ shared_mutex
source, because they might spin already. A good implementation of a spin lock can be found here, it covers some common gotchas. You might have to tweak it to get a read/write spinlock.
Generally speaking though, it's best to use existing constructs during the initial implementation at the very least as a clearly coded proof-of-concept. Then if you know that you're seeing too much read contention, you can optimize from there. But you need the general strategy down first, and 91 times out of a hundred, it's good enough. In this case, no matter what, some manifestation of a read/write lock is what you're going to end up with.