To go the full manual route: This method converts doubles to strings by shifting the number's decimal point around and using floor (to long) and modulus to extract the digits. Also, it uses counting by base division to figure out the place where the decimal point belongs. It can also "delete" higher parts of the number once it reaches the places after the decimal point, to avoid losing precision with ultra-large doubles. See commented code at the end. In my testing, it is never less precise than the Java float representations themselves, when they actually show these imprecise lower decimal places.
/**
* Convert the given double to a full string representation, i.e. no scientific notation
* and always twelve digits after the decimal point.
* @param d The double to be converted
* @return A full string representation
*/
public static String fullDoubleToString(final double d) {
// treat 0 separately, it will cause problems on the below algorithm
if (d == 0) {
return "0.000000000000";
}
// find the number of digits above the decimal point
double testD = Math.abs(d);
int digitsBeforePoint = 0;
while (testD >= 1) {
// doesn't matter that this loses precision on the lower end
testD /= 10d;
++digitsBeforePoint;
}
// create the decimal digits
StringBuilder repr = new StringBuilder();
// 10^ exponent to determine divisor and current decimal place
int digitIndex = digitsBeforePoint;
double dabs = Math.abs(d);
while (digitIndex > 0) {
// Recieves digit at current power of ten (= place in decimal number)
long digit = (long)Math.floor(dabs / Math.pow(10, digitIndex-1)) % 10;
repr.append(digit);
--digitIndex;
}
// insert decimal point
if (digitIndex == 0) {
repr.append(".");
}
// remove any parts above the decimal point, they create accuracy problems
long digit = 0;
dabs -= (long)Math.floor(dabs);
// Because of inaccuracy, move to entirely new system of computing digits after decimal place.
while (digitIndex > -12) {
// Shift decimal point one step to the right
dabs *= 10d;
final var oldDigit = digit;
digit = (long)Math.floor(dabs) % 10;
repr.append(digit);
// This may avoid float inaccuracy at the very last decimal places.
// However, in practice, inaccuracy is still as high as even Java itself reports.
// dabs -= oldDigit * 10l;
--digitIndex;
}
return repr.insert(0, d < 0 ? "-" : "").toString();
}
Note that while StringBuilder is used for speed, this method can easily be rewritten to use arrays and therefore also work in other languages.