I have one bigger dataframe and a small one which only has one row.
the bigger one
route TC2_37 ... TD25
value daily_change ... value daily_change
period ...
Aug 23 20339.0 4018.0 ... 26569.0 -951.0
Sep 23 19737.0 3037.0 ... 32725.0 -507.0
Oct 23 19821.0 1316.0 ... 38033.0 -18.0
Nov 23 20803.0 580.0 ... 40282.0 -188.0
Dec 23 22070.0 115.0 ... 42195.0 -148.0
Q3 23 18158.0 1891.0 ... 31269.0 -1102.0
Q4 23 20899.0 672.0 ... 40170.0 -117.0
Q1 24 16361.0 363.0 ... 37983.0 -125.0
Q2 24 14581.0 380.0 ... 28731.0 546.0
Q3 24 13029.0 415.0 ... 27840.0 628.0
Q4 24 16701.0 310.0 ... 33390.0 520.0
Cal 24 15168.0 367.0 ... 31986.0 393.0
Cal 25 13950.0 98.0 ... 30712.0 139.0
some columns are not shown but they all have same structures
the small dataframe looks like this:
route A6TCE BCTI BDTI MA2TCE ... TD7 TD8 TD25 V2TCE
period ...
2023-08-02 17134.0 720.0 821.0 28859.0 ... 9917.0 31700.0 10408.0 11800.0
The small dataframe has more routes than the bigger one,
I wish to create a new dataframe which has the small dataframe as the first row, but only with the columns(routes) which overlaps. And only under the column "value", NOT "daily_change"
route TC2_37 ... TD25
value daily_change ... value daily_change
period
2023-08-02 990.0 ... 10408.0
Aug 23 20339.0 4018.0 ... 26569.0 -951.0
Sep 23 19737.0 3037.0 ... 32725.0 -507.0
Oct 23 19821.0 1316.0 ... 38033.0 -18.0
Nov 23 20803.0 580.0 ... 40282.0 -188.0
Dec 23 22070.0 115.0 ... 42195.0 -148.0
Q3 23 18158.0 1891.0 ... 31269.0 -1102.0
Q4 23 20899.0 672.0 ... 40170.0 -117.0
Q1 24 16361.0 363.0 ... 37983.0 -125.0
Q2 24 14581.0 380.0 ... 28731.0 546.0
Q3 24 13029.0 415.0 ... 27840.0 628.0
Q4 24 16701.0 310.0 ... 33390.0 520.0
Cal 24 15168.0 367.0 ... 31986.0 393.0
Cal 25 13950.0 98.0 ... 30712.0 139.0
Reproduce this part of the bigger dataframe from dict:
{('TC2_37', 'value'): {'Aug 23': 20339.0, 'Sep 23': 19737.0, 'Oct 23': 19821.0, 'Nov 23': 20803.0, 'Dec 23': 22070.0, 'Q3 23': 18158.0, 'Q4 23': 20899.0, 'Q1 24': 16361.0, 'Q2 24': 14581.0, 'Q3 24': 13029.0, 'Q4 24': 16701.0, 'Cal 24': 15168.0, 'Cal 25': 13950.0},
('TC2_37', 'daily_change'): {'Aug 23': 4018.0, 'Sep 23': 3037.0, 'Oct 23': 1316.0, 'Nov 23': 580.0, 'Dec 23': 115.0, 'Q3 23': 1891.0, 'Q4 23': 672.0, 'Q1 24': 363.0, 'Q2 24': 380.0, 'Q3 24': 415.0, 'Q4 24': 310.0, 'Cal 24': 367.0, 'Cal 25': 98.0},
('TD25', 'value'): {'Aug 23': 26569.0, 'Sep 23': 32725.0, 'Oct 23': 38033.0, 'Nov 23': 40282.0, 'Dec 23': 42195.0, 'Q3 23': 31269.0, 'Q4 23': 40170.0, 'Q1 24': 37983.0, 'Q2 24': 28731.0, 'Q3 24': 27840.0, 'Q4 24': 33390.0, 'Cal 24': 31986.0, 'Cal 25': 30712.0},
('TD25', 'daily_change'): {'Aug 23': -951.0, 'Sep 23': -507.0, 'Oct 23': -18.0, 'Nov 23': -188.0, 'Dec 23': -148.0, 'Q3 23': -1102.0, 'Q4 23': -117.0, 'Q1 24': -125.0, 'Q2 24': 546.0, 'Q3 24': 628.0, 'Q4 24': 520.0, 'Cal 24': 393.0, 'Cal 25': 139.0}}