The initial problem starts like this. There are 6 states. At each state when w=1 move to the next state, when w=0 then stay at the current state. At each state display a number using a standard 7 led display (BCD). Those numbers are 8 -> 1 -> 9 -> 4 -> 2 -> 2.
So here is my attempt at this problem. I start with a state table: From left to right y2,y1,y0
w=0 w=1 a b c d e f g
000|000 001 1 1 1 1 1 1 1
001|001 010 0 1 1 0 0 0 0
010|010 011 1 1 1 1 0 1 1
011|011 100 0 1 1 0 0 1 1
100|100 101 1 1 0 1 1 0 1
101|101 000 1 1 0 1 1 0 1
Then Yo Y1 & Y2 equations are made using karnaugh maps
y1.y0 _ _
w.y2 00 01 11 10 Y0 = w.y0 + w.y0
00 0 1 1 0
01 0 1 d d
11 1 0 d d
10 1 0 0 1
y1.y0 _ _ _ _
w.y2 00 01 11 10 Y1 = w.y1 + w.y2.y1.y0 + w.y1.y0
00 0 0 1 1
01 0 0 d d
11 0 0 d d
10 0 1 0 1
y1.y0 _ _ _ _
w.y2 00 01 11 10 Y2 = w.y2 + y2.y1.y0 + w.y1.y0
00 0 0 0 0
01 1 1 d d
11 1 0 d d
10 0 0 1 0
Then the outputs need addition maps created.
Y1.Y0 _ _
Y2 00 01 11 10 a = Y2 + Y0.Y2
0 1 0 0 1
1 1 1 d d
Y1.Y0
Y2 00 01 11 10 b = 1
0 1 1 1 1
1 1 1 d d
Y1.Y0 _
Y2 00 01 11 10 c = Y2
0 1 1 1 1
1 0 0 d d
Y1.Y0 _ _
Y2 00 01 11 10 d = Y2 + Y0.Y2
0 1 0 0 1
1 1 1 d d
Y1.Y0 _ _ _
Y2 00 01 11 10 e = Y2 + Y0.Y1.Y2
0 1 0 0 0
1 1 1 d d
Y1.Y0 _ _
Y2 00 01 11 10 f = Y2.Y0 + Y1
0 1 0 1 1
1 0 0 d d
Y1.Y0 _ _
Y2 00 01 11 10 g = Y1 + Y2 + Y1.Y0
0 1 0 1 1
1 1 1 d d
Currently I am using a 3 bit D flip flop counter to create the 6 inputs.
The display shows.
_ _ _
|_| | |_| |_| |
|_| | _| | |_ _
Is there a mistake with the logic or is it possible that the counter could be creating this problem?