Lork,
After wrestling with a similar issues myself, I may have some pointers for you. I assume that you are using your Android device as a sort of remote ‘embedded controller’, which performs its functions with minimum user interaction. I believe that you are 95% there and just need to make some slight architectural changes. As you have not provided code, I’ll just explain in abstract terms rather than give code examples.
CommonsWare is correct that you need to use AlarmManager, but I suspect you already knew that.
A couple of background comments first, just to make sure that everything is understandable.
Alarms created by AlarmManager exist at the system level, that is they can exist beyond the lifecycle of the activity and application that created them. If you set an alarm but don’t want it to go off if your app changes state (for example after it has been destroyed), then you can cancel it using alarmManager.cancel(pendingIntent) – just create the intents and alarm manager with the same parameters and Android will match the alarm).
Similarly, BroadcastReceivers are registered at the system level (at least if they are declared in manifest.xml) and can exist beyond the lifecycle of the activity and application that created them. Again if you want to ensure that a BroadcastReceiver does not fire in response to an event occurring after your app has changed state (for example after it has been destroyed), you need to explicitly unregister in it code. If it was registered programmatically then use context.unregisterReceiver(broadcastReceiver); if it was registered statically in the Manifest its not so easy – you will have to retrieve the receiver using PackageManager and ComponentName (see: Android - how to unregister a receiver created in the manifest? ) - and remember that you will need to re-enable the receiver if you need it again.
You say you have already set up your alarm. Make sure you specify ELAPSED_REALTIME_WAKEUP or RTC_WAKUP for the alarm Type to ensure that it runs even when the phone is in ‘sleep’ mode.
You also say you have already created the associated BroadcastReceiver to handle to alarm event. The BroadcastReceiver should do a minimum of work, so you should handle any processing in a separate thread or by launching a Service. You opted to launch a Service and terminate it using stopSelf() when it has finished, so that it doesn’t use up system resources. So far so good.
This is fine when the app is running, however as you require something that runs reliably for an indefinite period, you need to ensure that you manage the 'exception' situations where it has paused, the device is ‘sleeping’, the app has crashed/terminated, or the device has rebooted (and any other exception scenarios you may think of). Here are the issues I have identified that you need to address:
First: WakeLock is only guaranteed for the duration of the onReceive() method of the BroadcastReceiver. After it has terminated, the device could go back to ‘sleep’ even if your Service has not started or even completed, so you need to create a WakeLock, pass it to the Service and release it before you stop the Service. (Note: for your application, you require a PARTIAL_WAKE_LOCK). Be very careful using WakeLocks – make sure you only hold a WakeLock for the minimum required time and ensure you release it, as it’s use can lead to excessive battery drain). See http://www.netmite.com/android/mydroid/development/pdk/docs/power_management.html for an example of using WakeLocks.
Second: If you reset your alarm in code (rather than defining an automatically repeating one), do this in the OnReceive() method of the BroadcastReceiver or as the first thing in the Service you have launched – this will ensure that the alarm repeats, irrespective of the state of the application or device.
Third: Make sure that any Contexts you use are going to be non-null values. You can dynamically fetch the context in the Service using getApplicationContext(). Otherwise this can be achieved by EXPLICITLY passing the Context from your application to the alarm and make sure it is passed all the way through the BroadcastReceiver, and associated threads and Services. If you have statically stored Context in your application so you can retrieve it anywhere, then this will return a null value if the application has terminated. If you use the Context (for example to retrieve a resource, access a database etc), and it is null, it will cause a null pointer exception and the Service or BroadcastReceiver will crash. I believe this is the most likely reason for your Broadcast receivers not to be working when your app has terminated.
Fourth: You may wish to make references to ResourceIDs (e.g. R.drawable.icon) in your Service or BroadcastReceiver fully qualified (. R.drawable.icon) or generated from the passed Context. I haven’t yet found this to be necessary, but I suspect it may be prudent.
Fifth: Implement a separate BroadcastReceiver to handle a device reboot scenario (ON_BOOT_COMPLETE event). You could get this receiver to re-launch the app if appropriate or it could launch a service to check that your app is supposed to be active, set up any required parameters and set up the relevant alarms, then terminate it using stopSelf(), or just set the alarm again and let that receiver handle it all. Remember to ensure the service has a WakeLock for its duration and to release the WakeLock when it is complete. If you don’t just relaunch the app, or a Service (declared as part of your application) then you should also statically store the correct Context as a class attribute in your BroadcastReceiver, if you need it, so that it is available to access resources.
A couple of other things you may wish to consider:
As your set up is remote, I would seriously consider storing any persistent data in SQLite database tables. This will ensure that data is recoverable between application terminations and device reboots, without having to regenerate it.
If your application communicates with a server service, consider using push notifications for server initiated communication, rather than have the app periodically poll. Push Notifications can also be used to ‘wake up and launch services and apps’, so could be used as part of a remote mechanism to query the status of the device and your application. This approach is also more power efficient and timely.
Post information to LogCat at key points in your code for debugging. If the application terminates, then adb stops tracking the source code running for the receiver and service, but LogCat continues to function, so can be used to check the path through the code and variable values.
Other people may have better ways to address these issues or some other pointers (I would certainly be very happy to see other input), but I hope these ideas are helpful and good luck!