While astype
is probably the "best" option there are several other ways to convert it to an integer array. I'm using this arr
in the following examples:
>>> import numpy as np
>>> arr = np.array([1,2,3,4], dtype=float)
>>> arr
array([ 1., 2., 3., 4.])
The int*
functions from NumPy
>>> np.int64(arr)
array([1, 2, 3, 4])
>>> np.int_(arr)
array([1, 2, 3, 4])
The NumPy *array
functions themselves:
>>> np.array(arr, dtype=int)
array([1, 2, 3, 4])
>>> np.asarray(arr, dtype=int)
array([1, 2, 3, 4])
>>> np.asanyarray(arr, dtype=int)
array([1, 2, 3, 4])
The astype
method (that was already mentioned but for completeness sake):
>>> arr.astype(int)
array([1, 2, 3, 4])
Note that passing int
as dtype to astype
or array
will default to a default integer type that depends on your platform. For example on Windows it will be int32
, on 64bit Linux with 64bit Python it's int64
. If you need a specific integer type and want to avoid the platform "ambiguity" you should use the corresponding NumPy types like np.int32
or np.int64
.