If you're already using the tidyverse, there are a few solution depending on the exact situation.
Basic if you know it's all numbers and doesn't have NAs
library(dplyr)
# solution
dataset %>% mutate_if(is.character,as.numeric)
Test cases
df <- data.frame(
x1 = c('1','2','3'),
x2 = c('4','5','6'),
x3 = c('1','a','x'), # vector with alpha characters
x4 = c('1',NA,'6'), # numeric and NA
x5 = c('1',NA,'x'), # alpha and NA
stringsAsFactors = F)
# display starting structure
df %>% str()
Convert all character vectors to numeric (could fail if not numeric)
df %>%
select(-x3) %>% # this removes the alpha column if all your character columns need converted to numeric
mutate_if(is.character,as.numeric) %>%
str()
Check if each column can be converted. This can be an anonymous function. It returns FALSE
if there is a non-numeric or non-NA character somewhere. It also checks if it's a character vector to ignore factors. na.omit removes original NAs before creating "bad" NAs.
is_all_numeric <- function(x) {
!any(is.na(suppressWarnings(as.numeric(na.omit(x))))) & is.character(x)
}
df %>%
mutate_if(is_all_numeric,as.numeric) %>%
str()
If you want to convert specific named columns, then mutate_at is better.
df %>% mutate_at('x1', as.numeric) %>% str()