Your problem is two things. You have some typos and misunderstanding. And the C++ standard is somewhat broken in this area.
I'll try to fix both.
First, a helper function called laundry_pods
. It takes raw memory and "launders" it into an array of a type of your choice, so long as you pick a pod type:
template<class T, std::size_t N>
T* laundry_pods( void* ptr ) {
static_assert( std::is_pod<std::remove_cv_t<T>>{} );
char optimized_away[sizeof(T)*N];
std::memcpy( optimized_away, ptr , sizeof(T)*N );
T* r = ::new( ptr ) T[N];
assert( r == ptr );
std::memcpy( r, optimized_away, sizeof(T)*N );
return r;
}
now simply do
void Manager::byteArrayToDoubleArray(byte ch[]) {
double* pdouble = laundry_pods<double, 8>(ch);
}
and pdouble
is a pointer to memory of ch
interpreted as an array of 8 doubles. (It is not a copy of it, it interprets those bytes in-place).
While laundry_pods
appears to copy the bytes around, both g++ and clang optimize it down into a binary noop. The seeming copying of bytes around is a way to get around aliasing restrictions and object lifetime rules in the C++ standard.
It relies on arrays of pod not having extra bookkeeping overhead (which C++ implementations are free to do; none do that I know of. That is what the non-static assert double-checks), but it returns a pointer to a real honest to goodness array of double. If you want to avoid that assumption, you could instead create each doulbe
as a separate object. However, then they aren't an array, and pointer arithmetic over non-arrays is fraught as far as the standard is concerned.
The use of the term "launder" has to do with getting around aliasing and object lifetime requirements. The function does nothing at runtime, but in the C++ abstract machine it takes the memory and converts it into binary identical memory that is now a bunch of double
s.