I created a custom CIKernel in Metal. This is useful because it is close to real-time. I am avoiding any cgcontext or cicontext that might lag in real time. My kernel essentially does a Hough transform, but I can't seem to figure out how to read the white points from the image buffer.
Here is kernel.metal:
#include <CoreImage/CoreImage.h>
extern "C" {
namespace coreimage {
float4 hough(sampler src) {
// Math
// More Math
// eventually:
if (luminance > 0.8) {
uint2 position = src.coord()
// Somehow add this to an array because I need to know the x,y pair
}
return float4(luminance, luminance, luminance, 1.0);
}
}
}
I am fine if this part can be extracted to a different kernel or function. The caveat to CIKernel, is its return type is a float4 representing the new color of a pixel. Ideally, instead of a image -> image
filter, I would like an image -> array
sort of deal. E.g. reduce instead of map. I have a bad hunch this will require me to render it and deal with it on the CPU.
Ultimately I want to retrieve the qualifying coordinates (which there can be multiple per image) back in my swift function.
FINAL SOLUTION EDIT:
As per suggestions of the answer, I am doing large per-pixel calculations on the GPU, and some math on the CPU. I designed 2 additional kernels that work like the builtin reduction kernels. One kernel returns a 1 pixel high image of the highest values in each column, and the other kernel returns a 1 pixel high image of the normalized y-coordinate of the highest value:
/// Returns the maximum value in each column.
///
/// - Parameter src: a sampler for the input texture
/// - Returns: maximum value in for column
float4 maxValueForColumn(sampler src) {
const float2 size = float2(src.extent().z, src.extent().w);
/// Destination pixel coordinate, normalized
const float2 pos = src.coord();
float maxV = 0;
for (float y = 0; y < size.y; y++) {
float v = src.sample(float2(pos.x, y / size.y)).x;
if (v > maxV) {
maxV = v;
}
}
return float4(maxV, maxV, maxV, 1.0);
}
/// Returns the normalized coordinate of the maximum value in each column.
///
/// - Parameter src: a sampler for the input texture
/// - Returns: normalized y-coordinate of the maximum value in for column
float4 maxCoordForColumn(sampler src) {
const float2 size = float2(src.extent().z, src.extent().w);
/// Destination pixel coordinate, normalized
const float2 pos = src.coord();
float maxV = 0;
float maxY = 0;
for (float y = 0; y < size.y; y++) {
float v = src.sample(float2(pos.x, y / size.y)).x;
if (v > maxV) {
maxY = y / size.y;
maxV = v;
}
}
return float4(maxY, maxY, maxY, 1.0);
}
This won't give every pixel where luminance is greater than 0.8, but for my purposes, it returns enough: the highest value in each column, and its location.
Pro: copying only (2 * image width) bytes over to the CPU instead of every pixel saves TONS of time (a few ms).
Con: If you have two major white points in the same column, you will never know. You might have to alter this and do calculations by row instead of column if that fits your use-case.
FOLLOW UP:
There seems to be a problem in rendering the outputs. The Float values returned in metal are not correlated to the UInt8 values I am getting in swift.
This unanswered question describes the problem.
Edit: This answered question provides a very convenient metal function. When you call it on a metal value (e.g. 0.5) and return it, you will get the correct value (e.g. 128) on the CPU.