I've been trying to understand matrices and vectors and implemented Rodrigue's rotation formula to determine the rotation matrix about an axis for a given angle. I've got function Transform which calls out to function Rotate.
// initial values of eye ={0,0,7}
//initial values of up={0,1,0}
void Transform(float degrees, vec3& eye, vec3& up) {
vec3 axis = glm::cross(glm::normalize(eye), glm::normalize(up));
glm::normalize(axis);
mat3 resultRotate = rotate(degrees, axis);
eye = eye * resultRotate;
glm::normalize(eye);
up = up * resultRotate;`enter code here`
glm::normalize(up);
}
mat3 rotate(const float degrees, const vec3& axis) {
//Implement Rodrigue's axis-angle rotation formula
float radDegree = glm::radians(degrees);
float cosValue = cosf(radDegree);
float minusCos = 1 - cosValue;
float sinValue = sinf(radDegree);
float cartesianX = axis.x;
float cartesianY = axis.y;
float cartesianZ = axis.z;
mat3 myFinalResult = mat3(cosValue +(cartesianX*cartesianX*minusCos), ((cartesianX*cartesianY*minusCos)-(cartesianZ*sinValue)),((cartesianX*cartesianZ*minusCos)+(cartesianY*sinValue)),
((cartesianX*cartesianY*minusCos)+(cartesianZ*sinValue)), (cosValue+(cartesianY*cartesianY*minusCos)), ((cartesianY*cartesianZ*minusCos) - (cartesianX*sinValue)),
((cartesianX*cartesianZ*minusCos)-(cartesianY*sinValue)), ((cartesianY*cartesianZ*minusCos) + (cartesianX*sinValue)), ((cartesianZ*cartesianZ*minusCos) + cosValue));
return myFinalResult;
}
All the values, resultant rotation matrix and the changed vectors are as expected for +angle of rotation, but wrong for negative angles and from then on, has cascading effect until the all the vectors are re-initialised. Can someone please help me figure out the problem? I cannot use any inbuilt functions like glm::rotate.