I've been trying to write a Finite State Machine in VHDL code for a simple 16-bit processor I'm implementing on an Altera DE1 board. In the Finite State Machine, I have a CASE
statement that handles the different 16-bit instructions, which are brought into the FSM by a 16-bit STD_LOGIC_VECTOR. However, I'm having a little trouble in the decode state where the Finite State Machine decodes the instruction. One of the instructions is an ADD which takes two registers as operands and a third as the destination register. However, I also have an ADD instruction which takes a register and a 5-bit immediate value as operands and a second register for the destination. My problem is that in the CASE
statement, I need to be able to differentiate between the two different ADD instructions. So, I thought that if I use wildcard values like "-" or "X" in the CASE
statement, I would be able to differentiate between the two with just two cases instead of listing all of the possible register/immediate value combinations. For example:
CASE IR IS --(IR stands for "Instruction Register")
WHEN "0001------0-----" => (Go to 3-register add);
WHEN "0001------1-----" => (Go to 2-register/immediate value add);
WHEN OTHERS => (Do whatever);
END CASE;
These aren't the only two instructions I have, I just put these two to make this post a little shorter. When I compile and run this code, the processor stops executing when it gets to the "decode" state. Also, Quartus gives many, many warnings saying things like "VHDL choice warning at LC3FSM.vhd(37): ignored choice containing meta-value ""0001------0-----""" I am at a loss as to how to go about accomplishing this. I REALLY do not and probably don't need to define every single 16-bit combination, and I hope there's a way to use wildcards in a STD_LOGIC_VECTOR to minimize the number of combinations I will have to define.
Does anybody know how to accomplish this?
Thanks